4 resultados para 3D laser scanner photogrammetry
em QSpace: Queen's University - Canada
Resumo:
In geotechnical engineering, the stability of rock excavations and walls is estimated by using tools that include a map of the orientations of exposed rock faces. However, measuring these orientations by using conventional methods can be time consuming, sometimes dangerous, and is limited to regions of the exposed rock that are reachable by a human. This thesis introduces a 2D, simulated, quadcopter-based rock wall mapping algorithm for GPS denied environments such as underground mines or near high walls on surface. The proposed algorithm employs techniques from the field of robotics known as simultaneous localization and mapping (SLAM) and is a step towards 3D rock wall mapping. Not only are quadcopters agile, but they can hover. This is very useful for confined spaces such as underground or near rock walls. The quadcopter requires sensors to enable self localization and mapping in dark, confined and GPS denied environments. However, these sensors are limited by the quadcopter payload and power restrictions. Because of these restrictions, a light weight 2D laser scanner is proposed. As a first step towards a 3D mapping algorithm, this thesis proposes a simplified scenario in which a simulated 1D laser range finder and 2D IMU are mounted on a quadcopter that is moving on a plane. Because the 1D laser does not provide enough information to map the 2D world from a single measurement, many measurements are combined over the trajectory of the quadcopter. Least Squares Optimization (LSO) is used to optimize the estimated trajectory and rock face for all data collected over the length of a light. Simulation results show that the mapping algorithm developed is a good first step. It shows that by combining measurements over a trajectory, the scanned rock face can be estimated using a lower-dimensional range sensor. A swathing manoeuvre is introduced as a way to promote loop closures within a short time period, thus reducing accumulated error. Some suggestions on how to improve the algorithm are also provided.
Resumo:
This paper introduces the LiDAR compass, a bounded and extremely lightweight heading estimation technique that combines a two-dimensional laser scanner and axis maps, which represent the orientations of flat surfaces in the environment. Although suitable for a variety of indoor and outdoor environments, the LiDAR compass is especially useful for embedded and real-time applications requiring low computational overhead. For example, when combined with a sensor that can measure translation (e.g., wheel encoders) the LiDAR compass can be used to yield accurate, lightweight, and very easily implementable localization that requires no prior mapping phase. The utility of using the LiDAR compass as part of a localization algorithm was tested on a widely-available open-source data set, an indoor environment, and a larger-scale outdoor environment. In all cases, it was shown that the growth in heading error was bounded, which significantly reduced the position error to less than 1% of the distance travelled.
Resumo:
Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.
Resumo:
The section of CN railway between Vancouver and Kamloops runs along the base of many hazardous slopes, including the White Canyon, which is located just outside the town of Lytton, BC. The slope has a history of frequent rockfall activity, which presents a hazard to the railway below. Rockfall inventories can be used to understand the frequency-magnitude relationship of events on hazardous slopes, however it can be difficult to consistently and accurately identify rockfall source zones and volumes on large slopes with frequent activity, leaving many inventories incomplete. We have studied this slope as a part of the Canadian Railway Ground Hazard Research Program and have collected remote sensing data, including terrestrial laser scanning (TLS), photographs, and photogrammetry data since 2012, and used change detection to identify rockfalls on the slope. The objective of this thesis is to use a subset of this data to understand how rockfalls identified from TLS data could be used to understand the frequency-magnitude relationship of rockfalls on the slope. This includes incorporating both new and existing methods to develop a semi-automated workflow to extract rockfall events from the TLS data. We show that these methods can be used to identify events as small as 0.01 m3 and that the duration between scans can have an effect on the frequency-magnitude relationship of the rockfalls. We also show that by incorporating photogrammetry data into our analysis, we can create a 3D geological model of the slope and use this to classify rockfalls by lithology, to further understand the rockfall failure patterns. When relating the rockfall activity to triggering factors, we found that the amount of precipitation occurring over the winter has an effect on the overall rockfall frequency for the remainder of the year. These results can provide the railways with a more complete inventory of events compared to records created through track inspection, or rockfall monitoring systems that are installed on the slope. In addition, we can use the database to understand the spatial and temporal distribution of events. The results can also be used as an input to rockfall modelling programs.