2 resultados para 291801 Fluidization and Fluid Mechanics
em QSpace: Queen's University - Canada
Resumo:
The heat transfer from a hot primary flow stream passing over the outside of an airfoil shaped strut to a cool secondary flow stream passing through the inside of that strut was studied experimentally and numerically. The results showed that the heat transfer on the inside of the strut could be reliably modeled as a developing flow and described using a power law model. The heat transfer on the outside of the strut was complicated by flow separation and stall on the suction side of the strut at high angles of attack. This separation was quite sensitive to the condition of the turbulence in the flow passing over the strut, with the size of the separated wake changing significantly as the mean magnitude and levels of anisotropy were varied. The point of first stall moved by as much as 15% of the chord, while average heat transfer levels changed by 2-5% as the inlet condition was varied. This dependence on inlet conditions meant that comparisons between experiment and steady RANS based CFD were quite poor. Differences between the CFD and experiment were attributed to anisotropic and unsteady effects. The coupling between the two flows was shown to be quite low - that is to say, heat transfer coefficients on both the inner and outer surfaces of the strut were relatively unaffected by the temperature of the strut, and it was possible to predict the temperature on the strut surface quite reliably using heat transfer data from decoupled tests, especially for CFD simulations.
Resumo:
Arginine vasopressin (AVP), a nine amino acid neuropeptide (CYFQNCPRG- NH2) fulfills a dual function: (i) in the periphery, AVP acts as a peptide hormone and (ii) in the CNS, AVP is a neuromodulatory peptide. AVP produces its effects through 3 AVP receptors (AVPRs). AVPR1a and AVPR1b are expressed in the CNS and periphery, whilst AVPR2 is not found centrally but instead solely expressed in the kidneys. Recent evidence revealed a high density of AVP-binding sites in the juxtacapsular nucleus of the bed nucleus of the stria terminalis (jxBNST). While in other regions of the brain, AVP acts at AVPRs to regulate an array of biological processes, including male-typical social behaviours, social memory, stress adaptation, fear, anxiety, and fluid homeostasis, its role in the jxBNST remains elusive. Furthermore, the neurophysiological properties of AVP in the jxBNST are unknown so this study aimed to examine how AVP modulates synaptic transmission in the rat jxBNST. The BNST being one of the most notable sexually dimorphic brain regions and AVPR expression being influenced by gonadal steroids, we investigated the putative influence of sex on the modulatory effects of AVP in the jxBNST. Finally, due to AVP being released at a substantially higher concentration following periods of water deprivation, we examined changes in AVPs modulatory role following water deprivation. Male and female Long Evans rats were euthanized and brain slice whole-cell voltage-clamp electrophysiology was done in the jxBNST to measure the effects of AVP on synaptic transmission of GABA synapses. Exogenous application of AVP produced three responses; either postsynaptic long-term potentiation (LTP) of GABAA-inhibitory postsynaptic currents (IPSC), postsynaptic long-term depression (LTD) of GABAA-IPSC, or no change in GABAA-IPSC amplitudes. Interestingly, the proportion of neurons responding in each of these ways did not differ between sexes and within females was not estrous cycle-dependent. Finally, although not statistically significant, 24-hour water deprivation abolished GABAA-LTD, an effect that was not a consequence of social isolation. Taken together, our data show that AVP modulates GABAA synaptic transmission in the jxBNST in fluid homeostasis- but not sex-dependent manner.