9 resultados para 260106 Ore Deposit Petrology

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The roasting of gold-bearing arsenopyrite at Giant mine (Northwest Territories) between 1949 and 1999 released approximately 20,000 tonnes of toxic arsenic-bearing aerosols in the local aerial environment. Detailed examination of lake sediments, sediment porewaters, surface waters and lake hydrology sampled from three lakes of differing limnological characteristics was conducted in summer and winter conditions. Samples were analyzed for solid and dissolved elemental concentrations, speciation and mineralogy. The three lakes are located less than 5km from the mine roaster, and downwind, based on predominant wind direction. The objective of the study was to assess the controls on the mobility and fate of arsenic in these roaster-impacted subarctic lacustrine environments. Results show that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of industrial activities. The bulk of arsenic in sediments is contained in the form of secondary sulphide precipitates, with iron oxides hosting a minimal amount of arsenic near the surface-water interface. The presence of geogenic arsenic is likely contained as dilute impurities in common rock-forming minerals, and is not believed to be a significant source of arsenic to sediments, porewaters or lake waters. Furthermore, the well correlated depth-profiles of arsenic, antimony and gold in sediments may help reveal roaster impact. The soluble arsenic trioxide particles contained in sediments act as the primary source of arsenic into porewaters. Dissolved arsenic in reducing porewaters both precipitate as secondary sulphides in situ, and diffuse upwards into the overlying lake waters. Arsenic diffusion out of porewaters, combined with watercourse-driven residence time, are estimated to be the predominant mechanisms controlling arsenic concentrations in overlying lake waters. The sequestration of arsenic from porewaters as sulphide precipitates, in the study lakes, is not an effective process in keeping lake-water arsenic concentrations below guidelines for the protection of the freshwater environment and drinking water. Seasonal impacts on lake geochemistry derive from ice covering lake waters, cutting them off from of atmospheric oxygen, along with the exclusion of solutes from the ice. Such effects are limited in deep lakes but are can be an important factor controlling arsenic precipitation and mobility in ponds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical compositions, modal mineralogy, and textural variability of interstitial minerals in sandstones of the Athabasca Group strata in the vicinity of the McArthur River unconformity-related uranium deposit were characterized using a combination of short wave infrared spectroscopy (SWIR), lithogeochemistry, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and laser ablation mass spectrometry (LA-ICP-MS) to determine the residence sites of pathfinder trace elements. The importance of integrating in-situ mineral chemistry with whole-rock analyses resides in the possibility to establish the mineralogical and paragenetic context of geochemical signatures in defining the footprint of the deposit. Located in the Athabasca Basin, Saskatchewan, Canada, the deposit is situated below ~550 m of quartz arenitic sandstones that are strongly silicified between depths of approximately 200-400 m. The silicified layer exhibits significant control on the distribution of alteration minerals, and appears to have restricted both the primary and secondary dispersion of pathfinder trace elements, which include U, radiogenic Pb isotopes, V, Ni, Co, Cu, Mo, As, Zn, and REEs. Diagenetic background sandstones contain assemblages of illite, dickite, aluminum-phosphate-sulfate (APS) minerals, apatite, and Fe-Ti oxide minerals. Altered sandstones contain assemblages of Al-Mg chlorite (sudoite), alkali-deficient dravite, APS minerals, kaolinite, illite, and oxide minerals. Throughout the sandstones, APS minerals account for the majority of the Sr and LREE concentrations, whereas late pre-ore chlorite, containing up to 0.1 wt.% Ni, accounts for the majority of Ni concentrations. Cobalt, Cu, Mo, and Zn occur predominantly in cryptic sub-micron sulfide and sulfarsenide inclusions in clay mineral aggregates and in association with paragenetically-late Fe-Ti oxides. Uranium occurs predominantly in cryptic micro-inclusions associated with pyrite in late-stage quartz overgrowths, and with paragenetically late Fe-Ti oxide micro-inclusions in kaolinite. Additionally, up to 0.2 wt.% U is cryptically distributed in post-ore Fe-oxide veins. Early diagenetic apatite, monazite and apatite inclusions in detrital quartz, and detrital zircon also contribute significant U and HREE to samples analyzed with an aggressive leach such as Aqua Regia. Detailed LA-ICP-MS chemical mapping of interstitial assemblages, detrital grains, and cements provides new insights into the distribution and inventory of pathfinder elements in the footprint of the McArthur River uranium deposit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bushranger Copper project is a known porphyry-style copper deposit located roughly 150 km west of Sydney in New South Wales, Australia. Monterey pines (Pinus radiata) growing over the mineralization were cored and their rings were counted. Segments of the core representing growth between 2003 and 2008 were selected, digested in nitric acid, and analyzed via ICP-MS. This time span was selected because there was the least variation in tree ring width among all samples during these years, indicating uniform growth. The relative concentrations of the pathfinder elements Al, Cu, Mo, Pb and Zn were highest in the south-western corner of the area. Based on the data this area is the most prospective area to conduct further exploration efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Los Negritos porphyry copper deposit is located ~ 4 km to the northeast of Carmen de Andacollo Mine in the Chilean Cretaceous metallogenic belt. The mineralization is hosted in andesite of the Quebrada Marquesa Formation and a series of at least four early to intramineral porphyry intrusive rock types: plagioclase quartz biotite porphyry (P1b and P1a dated at 109.60± 0.75 Ma and 107.22± 0.40 Ma); plagioclase biotite porphyry (P2: 106.30 ± 0.47 Ma); and quartz plagioclase biotite porphyry (P3: 106.19 ± 0.42 Ma). These units are cut by late‐ to post‐mineral plagioclase‐hornblende porphyritic rocks (P4b: 106.20 ± 0.69 Ma and P4a: 106.50 ± 0.68 Ma). The earliest intrusive units (P1) were affected by an initial stage of K‐feldspar‐biotite alteration, with chalcopyrite, molybdenite (date at 108.5 ± 0.5 Ma) and gold (up to 0.11 ppm), and the surrounding volcanic host rock was overprinted by chlorite‐epidote dominated (propylitic) alteration. Subsequent to the P2 and P3 intrusion, these rocks were affected by albite and then a second stage of potassic alteration. The Ti and Ba contents in hydrothermal biotite are notably lower (typically Ti = 0.100‐0.144 a.p.f.u. and Ba = 0.001‐0.005 a.p.f.u) than in magmatic ones (generally Ti = 0.186‐0.222 a.p.f.u. and Ba = 0.014‐0.023 a.p.f.u.), and constitute an excellent discriminant of the nature of biotite. These early stages of alteration were overprinted by copper‐molybdenum bearing chlorite‐sericite alteration at 106.60 ± 0.5 Ma (Re‐Os age in molybdenite) and by quartz‐sericite‐pyrite veins (phyllic), respectively in the southwest and northeast areas. The average temperature associated with these two alteration facies is estimated around 305 °C. Weak albite‐calcite alteration, spatially associated with sulfosalts and distributed along the margins of P3, overprinted the phyllic facies. The intrusive rock units at the Los Negritos and Carmen de Andacollo deposits are geochemically classified as diorite to granodiorite with a calc‐alkaline magmatic affinity, and formed in a volcanic arc setting from partial melting of a metasomatized mantle wedge. They are interpreted to be cogenetic, and related to a common long‐lived magma chamber that emplaced during a period of tectonic inversion known as the Subhercynian, Peruvian or Pacific event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cigar Lake is a high-grade uranium deposit, located in northern Saskatchewan, Canada. In order to extract the uranium ore remotely, thus ensuring minimal radiation dose to workers and also to access the ore from stable ground, the Jet Boring System (JBS) was developed by Cameco Corporation. This system uses a high-powered water jet to remotely excavate cavities. Survey data is required to determine the final shape, volume, and location of the cavity for mine planning purposes and construction. This paper provides an overview of the challenges involved in remotely surveying a JBS-mined cavity and studies the potential use of a time-of-flight (ToF) camera for remote cavity surveying. It reports on data collected and analyzed from inside an experimental environment as well as on real data acquired on site from the Cigar Lake and Rabbit Lake mines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global niobium production is presently dominated by three operations, Araxá and Catalão (Brazil), and Niobec (Canada). Although Brazil accounts for over 90% of the world’s niobium production, a number of high grade niobium deposits exist worldwide. The advancement of these deposits depends largely on the development of operable beneficiation flowsheets. Pyrochlore, as the primary niobium mineral, is typically upgraded by flotation with amine collectors at acidic pH following a complicated flowsheet with significant losses of niobium. This research compares the typical two stage flotation flowsheet to a direct flotation process (i.e. elimination of gangue pre-flotation) with the objective of circuit simplification. In addition, the use of a chelating reagent (benzohydroxamic acid, BHA) was studied as an alternative collector for fine grained, highly disseminated pyrochlore. For the amine based reagent system, results showed that while comparable at the laboratory scale, when scaled up to the pilot level the direct flotation process suffered from circuit instability because of high quantities of dissolved calcium in the process water due to stream recirculation and fine calcite dissolution, which ultimately depressed pyrochlore. This scale up issue was not observed in pilot plant operation of the two stage flotation process as a portion of the highly reactive carbonate minerals was removed prior to acid addition. A statistical model was developed for batch flotation using BHA on carbonatite ore (0.25% Nb2O5) that could not be effectively upgraded using the conventional amine reagent scheme. Results showed that it was possible to produce a concentrate containing 1.54% Nb2O5 with 93% Nb recovery in ~15% of the original mass. Fundamental studies undertaken included FT-IR and XPS, which showed the adsorption of both the protonized amine and the neutral amine onto the surface of the pyrochlore (possibly at niobium sites as indicated by detected shifts in the Nb3d binding energy). The results suggest that the preferential flotation of pyrochlore over quartz with amines at low pH levels can be attributed to a difference in critical hemimicelle concentration (CHC) values for the two minerals. BHA was found to be absorbed on pyrochlore surfaces by a similar mechanism to alkyl hydroxamic acid. It is hoped that this work will assist in improving operability of existing pyrochlore flotation circuits and help promote the development of niobium deposits globally. Future studies should focus on investigation into specific gangue mineral depressants and inadvertent activation phenomenon related to BHA flotation of gangue minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bitumen extraction from surface-mined oil sands results in the production of large volumes of Fluid Fine Tailings (FFT). Through Directive 085, the Province of Alberta has signaled that oil sands operators must improve and accelerate the methods by which they deal with FFT production, storage and treatment. This thesis aims to develop an enhanced method to forecast FFT production based on specific ore characteristics. A mass relationship and mathematical model to modify the Forecasting Tailings Model (FTM) by using fines and clay boundaries, as the two main indicators in FFT accumulation, has been developed. The modified FTM has been applied on representative block model data from an operating oil sands mining venture. An attempt has been made to identify order-of-magnitude associated tailings treatment costs, and to improve financial performance by not processing materials that have ultimate ore processing and tailings storage and treatment costs in excess of the value of bitumen they produce. The results on the real case study show that there is a 53% reduction in total tailings accumulations over the mine life by selectively processing only lower tailings generating materials through eliminating 15% of total mined ore materials with higher potential of fluid fines inventory. This significant result will assess the impact of Directive 082 on mining project economic and environmental performance towards the sustainable development of mining projects.