4 resultados para 2-domain Arginine Kinase

em QSpace: Queen's University - Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

While protein tyrosine kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. Studies of close to 20 homologs of bacterial protein tyrosine (BY) kinases have inaugurated a blooming new field of research, all since just the end of the last decade. These kinases are key regulators in the polymerization and exportation of the virulence-determining polysaccharides which shield the bacterial from the non-specific defenses of the host. This research is aimed at furthering our understanding of the BY kinases through the use of X-ray crystallography and various in vitro and in vivo experiments. We reported the first crystal structure of a bacterial PTK, the C-terminal kinase domain of E. coli tyrosine kinase (Etk) at 2.5Å resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting evidences, we proposed a unique activation mechanism for BY kinases in Gram-negative bacteria. The phosphorylation of tyrosine residue Y574 at the active site and the specific interaction of P-Y574 with a previously unidentified key arginine residue, R614, unblock the Etk active site and activate the kinase. Both in vitro kinase activity and in vivo antibiotics resistance studies utilizing structure-guided mutants further support the novel activation mechanism. In addition, the level of phosphorylation of their C-terminal Tyr cluster is known to regulate the translocation of extracellular polysaccharides. Our studies have significantly clarified our understanding of how the phosphorylation status on the C-terminal tyrosine cluster of BY kinases affects the oligomerization state of the protein, which is likely the machinery of polysaccharide export regulation. In summary, this research makes a substantial contribution to the rapidly progressing research of bacterial tyrosine kinases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Tribbles Homologues are a family of three eukaryotic pseudokinases (Trb1, Trb2, Trb3) that act as allosteric inhibitors and regulatory scaffold sites in pathways governing adipogenesis, cell proliferation and insulin signaling. The Tribbles Homologues have the same overall tertiary structure of the eukaryotic protein kinase domain, but lack multiple residues necessary to catalysis in the nucleotide-binding P-loop and the Mg2+-coordinating DFG motif. Trb1 has been shown conclusively to be incapable of binding ATP, whereas a recent study presents evidence that Trb2 autophosphorylates independently of Mg2+ in vitro. This finding is surprising given the high degree of sequence similarity between the two proteins (71%), and suggests unique nucleotide binding and phosphotransfer mechanisms. The goal of this project was to investigate whether Trb2 possesses kinase activity or not and determine its structural basis. A method for the high-yield recombinant expression and purification of stable Trb2 was developed. Trb2 nucleotide binding and autophosphorylation could not be detected across multiple experimental approaches, including thermal shift assays, MANT-ATP fluorescence, radiolabeled phosphate incorporation, and nonspecific ATPase activity assays. Further characterization also revealed that Trb2 forms homomultimers with possible functional consequences, and extensive crystallization screening has yielded multiple promising conditions that could produce diffraction-quality crystals with further optimization. This project explores the difficulties in functionally characterizing putatively active pseudokinases, and proposes a structural basis for the conserved pseudokinase features of the Tribbles homologues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small proline-rich protein-2 (SPRR2) functions as a determinant of flexibility and permeability in the mature cornified envelope of the skin. SPRR2 is strongly upregulated by the commensal flora and may mediate signaling to differentiated epithelia of the small intestine and colon. Yet, SPRR2 function in the GI tract is largely unexplored. Using the Caco-2 model of intestinal epithelial differentiation along the crypt-villus axis, we hypothesized that SPRR2 would be preferentially expressed in post-confluent differentiated Caco-2 cells and examined SPRR2 regulation by the protein kinase A pathway (PKA) and short chain fatty acids (SCFAs). Differentiation-dependent SPRR2 expression was examined in cytoskeletal-, membrane-, and nuclear-enriched fractions by immunoblotting and confocal immunofluorescence. We studied the effect of SCFAs, known inducers of differentiation, on SPRR2 expression in pre-confluent undifferentiated Caco-2 cells and explored potential mechanisms involved in this induction using MAP kinase inhibitors. SPRR2 expression was also compared between HIEC crypt cells and 16 to 20 week primary fetal villus cells as well as in different segments in mouse small intestine and colon. We determined if SPRR2 is increased by gram negative bacteria such as S. typhimurium. SPRR2 expression increased in a differentiation-dependent manner in Caco-2 cells and was present in human fetal epithelial villus cells but absent in HIEC crypt cells. Differentiation-induced SPRR2 was down-regulated by 8-Br-cAMP as well as by forskolin/IBMX co-treatment. SPRR2 was predominantly cytoplasmic and did not accumulate in Triton X-100-insoluble cytoskeletal fractions. SPRR2 was present in the membrane- and nuclear-enriched fractions and demonstrated co-localization with F-actin at the apical actin ring. No induction was seen with the specific HDAC inhibitor trichostatin A, while SCFAs and the HDAC inhibitor SBHA all induced SPRR2. SCFA responses were inhibited by MAP kinase inhibitors SB203580 and U0126, thus suggesting that the SCFA effect may be mediated by orphan G-protein receptors GPR41 and GPR43. S. typhimurium induced SPRR2 in undifferentiated cells. We conclude that SPRR2 protein expression is associated with differentiated epithelia and is regulated by PKA signaling and by by-products of the bowel flora. This is the first report to establish an in vitro model to study the physiology and regulation of SPRR2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple lines of evidence suggest that elevated plasma lipoprotein(a) (Lp(a)) concentrations are a significant risk factor for the development of a number of vascular diseases including coronary heart disease and stroke. Lp(a) consists of a low-density lipoprotein (LDL)-like moiety and an unique glycoprotein, apolipoprotein(a) (apo(a)), that is covalently attached to the apolipoproteinB-100 (apoB-100) component of LDL by a single disulfide bond. Many studies have suggested a role for Lp(a) in the process of endothelial dysfunction. Indeed, Lp(a) has been shown to increase both the expression of adhesion molecules on endothelial cells (EC), as well as monocyte and leukocyte chemotactic activity in these cells. We have previously demonstrated that Lp(a), through its apo(a) moiety, increases actomyosin-driven EC contraction which, as a consequence, increases EC permeability. In this thesis, we have demonstrated a role for the strong lysine-binding site in the kringle IV type 10 domain of apo(a) in increasing EC permeability, which occurs through a Rho/Rho kinase-dependent pathway. We have further validated these findings using mouse mesenteric arteries in a pressure myograph system. We also have dissected another major signaling pathway initiated by apo(a) that involves in a disruption of adherens junctions in EC. In this pathway, apo(a)/Lp(a) activates the PI3K/Akt/GSK3β-dependent pathway to facilitate nuclear translocation of beta-catenin. In the nucleus beta-catenin induced the expression of cyclooxygenase-2 (COX-2) and the secretion of prostaglandin E2 (PGE2) from the EC. Finally, we have presented data to suggest a novel inflammatory role for apo(a) in which it induces the activation of nuclear factor-kappaB through promotion of the dissociation of IkappaB from the inactive cytoplasmic complex; this allows the nuclear translocation of NFkappaB with attendant effects on the transcription of pro-inflammatory genes. Taken together, our findings may facilitate the development of new drug targets for mitigating the harmful effects of Lp(a) on vascular EC which corresponds to an early step in the process of atherogenesis.