3 resultados para 030603 Colloid and Surface Chemistry
em QSpace: Queen's University - Canada
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
This thesis reports the synthesis and/or applications of three types of block copolymers that each bear a low-surface-energy block. First, poly(dimethylsiloxane)-block-poly(2-cinnamoyloxyethyl acrylate) (PDMS-b-PCEA) was synthesized and characterized. Cotton coating using a micellar solution of this block copolymer yielded superhydrophobic cotton fabrics. X-ray photoelectron spectroscopy (XPS) and surface property analyses indicated that the PDMS block topped the polymer coating. Photocuring the cotton swatches crosslinked the underlying PCEA layer and yielded permanent coatings. More interestingly, hydrophilically patterned superhydrophobic cotton fabrics were produced using photolithography that allowed the crosslinking of the coating around irradiated fibers but the removal, by solvent extraction, of the coating on fibers that were not irradiated. Since water-based ink only permeated the uncoated regions, such patterned fabric was further used to print ink patterns onto substrates such as fabrics, cardboard, paper, wood, and aluminum foil. Then, another PDMS-based diblock copolymer poly(dimethylsiloxane)-block-poly(glycidyl methacrylate) (PDMS-b-PGMA) was prepared. Different from PCEA that photocrosslinked around cotton fibers, PGMA reacted with hydroxyl groups on cotton fiber surfaces to get covalently attached. Further, different PGMA chains crosslinked with each other. PDMS-b-PGMA-coated cotton fabrics have been used for oil-water separations. In addition, polymeric nanoparticles were grafted onto cotton fiber surface before PDMS-b-PGMA was used to cover the surfaces of the grafted spheres and the residual surfaces of the cotton fibers. These two types of fabrics, coated by the block copolymer alone or by the polymer nanospheres and then the copolymer, were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and water repellency analyses. A comprehensive comparative study was made of their performances in oil-water separation. Finally, a fluorinated ABC triblock copolymer poly(acrylic acid)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(2-perfluorooctylethyl methacrylate) (PAA-b-PCEMA-b-PFOEMA) was used to iii encapsulate air nanobubbles. The produced air nanobubbles were thermodynamically stable in water and were some 100 times more stable than commercially available perfluorocarbon-filled microbubbles under ultrasound. These nanobubbles, due to their small sizes and thus ability to permeate the capillary networks of organs and to reach tumors, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery.