3 resultados para (geodetic) thickness or volume changes
em QSpace: Queen's University - Canada
Resumo:
Climate change is occurring most rapidly in the Arctic where warming has been twice as fast as the rest of the globe over the last few decades. Arctic soils contain a vast store of carbon and warmer arctic soils may mediate current atmospheric CO2 concentrations and global warming trends. Warmer soils could increase nutrient availability to plants, leading to increased primary production and sequestration of CO2. Presumably because of these effects of warming on shrub ecosystems, shrubs have been expanding across the arctic over the last 50 years, Arctic shrub expansion may track or cause changes in nutrient cycling and availability that favour growth of larger, denser shrubs. This study aimed at measuring gross and net nitrogen cycling rates, major soil nitrogen and carbon pool sizes, and elucidating controls on nutrient cycling and availability between a mesic birch (Betula nana) hummock tundra ecosystem and an ecosystem of dense, tall, birch (B. nana) shrubs. Nitrogen cycling and availability was enhanced at the tall shrub ecosystem compared to the birch hummock ecosystem. Net nitrogen immobilization by microbes was approximately threefold greater at the tall shrub ecosystem. This was in part because of larger microbial biomass nitrogen and carbon (interpreted as a larger microbial community) at the tall shrub ecosystem. Nitrogen inputs via litter were significantly larger at the tall shrub ecosystem and were hypothesized to be the major contributor to the higher dissolved organic and inorganic nitrogen pools in the soil at the tall shrub ecosystem. The results from this study suggest a positive feedback mechanism between litter nitrogen inputs and the enhancement of nitrogen cycling and availability as a driver of shrub expansion across the Arctic.
Resumo:
Various sources have sought to consider the educational interventions that foster changes in perception of and attitudes toward nature, with the ultimate intent of understanding how education can be used to encourage environmentally responsible behaviours. With these in mind, the current study identified an outdoor environmental education program incorporating these empirically supported interventions, and assessed its ability to influence environmental knowledge, attitudes, and behaviours. Specifically, this study considered the following research questions: 1) To what degree can participation in this outdoor education program foster environmental knowledge and encourage pro-environmental attitudes and self-reported pro-environmental behaviours? 2) How is this effect different among students of different genders, and those who have different prior experiences in nature? Two motivational frameworks guided inquiry in the current study: the Value-Belief-Norm Model of Environmentalism (VBN) and the Theory of Planned Behaviour (TPB). The study employed a quantitative survey methodology, combining contemporary data measuring knowledge, attitudes, and behaviours with archived data collected by program staff, reflecting frequency of environmentally responsible behaviour. Further, a single qualitative item was included for which students provided “the first three words that [came] to mind when [they] think of the word nature.” Terms provided before and after the program were compared for differences in theme to detect subtle or underlying changes. Quantitative results indicated no significant change in student knowledge or attitudes through the outdoor environmental education program. However, a significant change in self-reported behaviour was identified from both the contemporary and archived data. This agreement in positive findings across the two data sets, collected using different measures and different participants, lends evidence of the program’s ability to encourage self-reported pro-environmental behaviour. Further, qualitative results showed some change in students’ perceptions of nature through the program, providing direction for future research. These findings suggest that this particular outdoor education program was successful in encouraging students’ self-reported environmentally responsible behaviour. This change was achieved without significant change in knowledge or environmental attitudes, suggesting that external factors not measured in this study might have played a role in affecting behaviour.
Resumo:
Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.