1 resultado para (H, G)-coincidence
em QSpace: Queen's University - Canada
Resumo:
Molecular beam cooled HCl was state selected by two-photon excitation of the V (1) summation operator(0(+)) [v=9,11-13,15], E (1) summation operator(0(+)) [v=0], and g (3) summation operator(-)(0(+)) [v=0] states through either the Q(0) or Q(1) lines of the respective (1,3) summation operator(0(+))<--<--X (1) summation operator(0(+)) transition. Similarly, HBr was excited to the V (1) summation operator(0(+)) [v=m+3, m+5-m+8], E (1) summation operator(0(+)) [v=0], and H (1) summation operator(0(+)) [v=0] states through the Q(0) or Q(1) lines. Following absorption of a third photon, protons were formed by three different mechanisms and detected using velocity map imaging. (1) H(*)(n=2) was formed in coincidence with (2)P(i) halogen atoms and subsequently ionized. For HCl, photodissociation into H(*)(n=2)+Cl((2)P(12)) was dominant over the formation of Cl((2)P(32)) and was attributed to parallel excitation of the repulsive [(2) (2)Pi4llambda] superexcited (Omega=0) states. For HBr, the Br((2)P(32))Br((2)P(12)) ratio decreases with increasing excitation energy. This indicates that both the [(3) (2)Pi(12)5llambda] and the [B (2) summation operator5llambda] superexcited (Omega=0) states contribute to the formation of H(*)(n=2). (2) For selected intermediate states HCl was found to dissociate into the H(+)+Cl(-) ion pair with over 20% relative yield. A mechanism is proposed by which a bound [A (2) summation operatornlsigma] (1) summation operator(0(+)) superexcited state acts as a gateway state to dissociation into the ion pair. (3) For all intermediate states, protons were formed by dissociation of HX(+)[v(+)] following a parallel, DeltaOmega=0, excitation. The quantum yield for the dissociation process was obtained using previously reported photoionization efficiency data and was found to peak at v(+)=6-7 for HCl and v(+)=12 for HBr. This is consistent with excitation of the repulsive A(2) summation operator(12) and (2) (2)Pi states of HCl(+), and the (3) (2)Pi state of HBr(+). Rotational alignment of the Omega=0(+) intermediate states is evident from the angular distribution of the excited H(*)(n=2) photofragments. This effect has been observed previously and was used here to verify the reliability of the measured spatial anisotropy parameters.