435 resultados para Kingston
Resumo:
E2A is a transcription factor that plays a particularly critical role in lymphopoiesis. The chromosomal translocation 1;19, disrupts the E2A gene and results in the expression of the fusion oncoprotein E2A-PBX1, which is implicated in acute lymphoblastic leukemia. Both E2A and E2A-PBX1 contain two activation domains, AD1 and AD2, which comprise conserved ΦxxΦΦ motifs where Φ denotes a hydrophobic amino acid. These domains function to recruit transcriptional co-activators and repressors, including the histone acetyl transferase CREB binding protein (CBP) and its paralog p300. The PCET motif within E2A AD1 interacts with the KIX domain of CBP/p300, the disruption of which abrogates the transcriptional activation by E2A and the transformative properties of E2A-PBX1. The generation of a peptide-based inhibitor targeting the PCET:KIX interaction would serve useful in further assessing the role of E2A and E2A-PBX1 in lymphopoiesis and leukemogenesis. An interaction between E2A AD2 and the KIX domain has also been recently identified, and the TAZ domains of CBP/p300 have been shown to interact with several transcription factors that contain ΦxxΦΦ motifs. Thus the design of an inhibitor of the E2A:CBP/p300 interaction requires the full complement of interactions between E2A and the various domains of CBP/p300 to be elucidated. Here, we have used nuclear magnetic resonance (NMR) spectroscopy to determine that AD2 interacts with KIX at the same site as PCET, which indicates that the E2A:KIX interaction can be disrupted by targeting a single binding site. Using an iterative synthetic peptide microarray approach, a peptide with the sequence DKELQDLLDFSLQY was derived from PCET to interact with KIX with higher affinity than the wild type sequence. This peptide now serves as a lead molecule for further development as an inhibitor of the E2A:CBP/p300 interaction. Fluorescence anisotropy, peptide microarray technology, and isothermal titration calorimetry were employed to characterize interactions between both TAZ domains of CBP/p300 and the PCET motif and AD2 of E2A. Alanine substitution of residues within PCET demonstrated that the ΦxxΦΦ motif is a key mediator of these interactions, analogous to the PCET:KIX interaction. These findings now inform future work to establish possible physiological roles for the E2A:TAZ1 and E2A:TAZ2 interactions.
Resumo:
Background & Purpose: Chronic pain is a prevalent chronic condition for which the best management options rarely provide complete relief. Individuals with chronic pain with neuropathic characteristics (NC) report more severe pain and experience less relief from interventions. Little is known about current self-management practices. The purpose of this dissertation was to inform self-management of chronic pain with and without NC at the individual, health system, and policy levels using the Innovative Care for Chronic Conditions Framework. Methods: The study included a systematic search and review and cross-sectional survey. The review evaluated the evidence for chronic pain self-management interventions and explored the role of health care providers in supporting self-management. The survey was mailed to 8,000 randomly selected Canadians in November 2011, and non-respondents were followed-up in May 2012. Screening questions were included for both chronic pain and NC. The questionnaire captured pain descriptions, self-management strategies, and self-management barriers, and facilitators. Results: Findings of the review suggested that self-management interventions are effective in improving pain and health outcomes. Health care professionals provided self-management advice and referred individuals to self-management interventions. The questionnaire was completed by 1,520 Canadians. Those with chronic pain (n=710) identified primary care physicians as the most helpful pain management professional. Overall, use of non-pharmaceutical medical self-management strategies was low. While use positive emotional self-management strategies was high, individuals with NC were more likely to use negative emotional self-management strategies compared to those without NC. Multiple self-management barriers and facilitators were identified, however those with NC were more likely than those without NC to experience low self-efficacy, depression and severe pain which may impair the ability to self-management. Conclusions: Health care professionals have the opportunity to improve chronic pain outcomes by providing self-management advice, referring to self-management interventions, and addressing self-management barriers and facilitators. Individuals with NC may require additional health services to address their greater self-management challenges, and further research is needed to identify non-pharmaceutical interventions effective in relieving chronic pain with NC. Public policy is needed to facilitate health systems in providing long-term self-management support for individuals with chronic pain.
Resumo:
Cyclododecane (CDD) is a waxy, solid cyclic hydrocarbon (C12H24) that sublimes at room temperature and possesses strong hydrophobicity. In paper conservation CDD is used principally as a temporary fixative of water-soluble media during aqueous treatments. Hydrophobicity, ease of reversibility, low toxicity, and absence of residues are reasons often cited for its use over alternative materials although the latter two claims continue to be debated in the literature. The sublimation rate has important implications for treatment planning as well as health and safety considerations given the dearth of reliable information on its toxicity and exposure limits. This study examined how the rate of sublimation is affected by fiber type, sizing, and surface finish as well as delivery in the molten phase and as a saturated solution in low boiling petroleum ether. The effect of warming the paper prior to application was also evaluated. Sublimation was monitored using gravimetric analysis after which samples were tested for residues with gas chromatography-flame ionization detection (GC-FID) to confirm complete sublimation. Water absorbency tests were conducted to determine whether this property is fully reestablished. Results suggested that the sublimation rate of CDD is affected minimally by all of the paper characteristics and application methods examined in this study. The main factors influencing the rate appear to be the thickness and mass of the CDD over a given surface area as well as temperature and ventilation. The GC-FID results showed that most of the CDD sublimed within several days of its disappearance from the paper surface regardless of the application method. Minimal changes occurred in the water absorbency of the samples following complete sublimation.
Resumo:
Successful fertilization depends upon the activation of metaphase II arrested oocytes by sperm-borne oocyte activating factor (SOAF). Failure of oocyte activation is considered as the cause of treatment failure in a proportion of infertile couples. SOAF induces the release of intracellular calcium in oocyte which leads to meiotic resumption and pronuclear formation. Calcium release is either in the form of single calcium transient in echinoderm and amphibian oocytes or several calcium oscillations in ascidian and mammalian oocytes. Although the SOAF attributes are established, it is not clear which sperm protein(s) play such role. Sperm postacrosomal WW binding protein (PAWP) satisfies a developmental criteria set for a candidate SOAF. This study shows that recombinant human PAWP protein or its transcript acts upstream of calcium release and fully activates the amphibian and mammalian oocytes. Interference trials provided evidence for the first time that PAWP mediates sperm-induced intracellular calcium release through a PPXY/WWI domain module in Xenopus, mouse and human oocytes. Clinical applications of PAWP were further investigated by prospective study on the sperm samples from patients undergoing intracytoplasmic sperm injection (ICSI). PAWP expression level, analyzed by flow cytometry, was correlated to ICSI success rate and embryonic development. This study also explored the developmental expression of the other SOAF candidate, PLCζ in male reproductive system and its function during fertilization. Our findings showed for the first time that PLCζ most likely binds to the sperm head surface during epididymal passage and is expressed in epididymis. We demonstrated that PLCζ is also compartmentalized early in spermiogenesis and thus could play an important role during spermiogenesis. Detailed analysis of in vitro fertilization revealed that PLCζ disappears from sperm head during acrosome reaction and is not detectable during sperm incorporation into the oocyte cytoplasm. In conclusion, this dissertation provides evidence for the essential non-redundant role of sperm PAWP in amphibian and mammalian fertilization; recommends PAWP as a biomarker for prediction of ICSI outcomes in infertile couples; and proposes that sperm PLCζ may have functions other than inducing oocyte activation during fertilization.
Resumo:
Developing appropriate treatments for easel paintings can be complex, as many works are composed of various materials that respond in different ways. When selecting a filling material for these artworks, several properties are investigated including: the need for the infill to react to environmental conditions in a similar manner as the original material; the need for the infill to have good handling properties, adhesion to the original support, and cohesion within the filling material; the ability for the infill to withstand the stress of the surrounding material and; be as flexible as the original material to not cause further damage. Also, changes in colour or mechanical properties should not occur as part of the ageing process. Studies are needed on acrylic-based materials used as infills in conservation treatments. This research examines some of the chemical, physical, and optical changes of eleven filling materials before and after ageing, with the aim to evaluate the overall appropriateness of these materials as infills for easel paintings. The materials examined were three rabbit skin glue (RSG) gessoes, and seven commercially prepared acrylic materials, all easily acquired in North America. Chemical analysis was carried out with Fourier transform infrared (FTIR) spectroscopy and X-ray fluorescence (XRF), pyrolysis gas chromatography-mass spectroscopy (Py-GC/MS), and differential scanning calorimetry (DSC). Overall the compositions of the various materials examined were found to be in agreement with the available literature and previous research. This study also examined characteristics of these materials not described in previous works and, additionally, presented the compositions and behaviour of several commonly used materials with little literature description. After application of an ageing regimen, most naturally aged and artificially aged samples displayed small changes in gloss, colour, thickness, and diffusive behaviour; however, to evaluate these materials fully mechanical testing and environmental studies should be carried out.
Resumo:
Conservators have long been aware of the problems associated with the preservation of rubber objects due to inherent instability that can be attributed, in part, to the presence of additives. Inorganic additives, such as fillers, accelerators, stabilizers, and special ingredients are necessary in manufacturing to alter the properties of natural rubber. These materials all have different interactions with the rubber, and each other, and differing effects on the ageing process. To date, the most effective and accepted methods to preserve rubber are cold, dark storage of objects, or the use of low oxygen environments. While these methods are effective, they greatly limit access. The application of coatings to the surface of rubber objects can slow deterioration and greatly increase the ability of an institution to handle and display rubber objects. While numerous coatings for preventive and interventive treatment have been tested, none have been so successful to warrant routine use. The first section of this research highlighted the relationship between the inclusion of certain additives in natural rubber objects and the accelerated or slowed down overall degradation. In the second part of this research, the acrylic varnishes Golden Polymer Varnish with UVLS, Lascaux Acrylic Transparent Varnish-UV, Sennelier Matte Lacquer with UV Protection, and Liquitex Soluvar Varnish containing ultraviolet light absorbers or stabilizers were tested as a preventative coating for rubber. Through testing the visual and physical properties of the samples, as well as compound analysis the results of this research suggest that acrylic varnishes do provide protection, each to varying degrees. The results also provided insight into the behavior of rubber and these varnishes with continuing light exposure.
Resumo:
Pregnancy is characterized by a state of heightened coagulation, which is exacerbated in pathological conditions such as pre-eclampsia (PET). PET is further associated with abnormal maternal inflammation and increased circulating microparticles (MP); however, a mechanistic link between these pathological features has never been established. It is proposed in this thesis that abnormal maternal inflammation is causally linked to pro-coagulant trophoblast MP shedding via a mechanism mediated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF), thereby contributing to maternal coagulopathies associated with PET. Using thromboelastography (TEG) and standard laboratory tests, haemostatic function was evaluated in PET and normotensive subjects at delivery and post-partum. Furthermore, the effects of the menstrual cycle and oral contraceptive (OC) use on haemostatic function were assessed in non-pregnant subjects in order to understand their influence on post-partum haemostasis. Plasma TNF and pro-coagulant MP levels were evaluated in the pregnant subjects. Using chorionic villi explants from human term placentas, MPs were quantified after TNF administration. The pro-coagulant potential of placental MPs was evaluated by TEG by spiking whole-blood with medium containing MPs from chorionic villi. TEG identified increased whole-blood coagulability in PET subjects at delivery, demonstrating its increased sensitivity over standard laboratory tests at identifying haemostatic alterations associated with PET. Haemostatic alterations were normalized by six weeks post-partum. TEG also identified cyclic haemostatic variations associated with OC use. Chorionic villi treated with TNF (1 ng/ml) shed significantly more MPs than untreated placentas. MPs from chorionic villi increased the coagulability of whole-blood. Together, results provide evidence supporting the concept that abnormal maternal inflammation is causally linked to the development of maternal coagulopathies in pregnancy complications. Moreover, TEG may be superior to standard laboratory tests in evaluating haemostasis in pregnant and non-pregnant subjects.
Resumo:
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy characterized by maternal systemic endothelial dysfunction. While the clinical manifestations resolve soon after delivery, a large body of epidemiological evidence indicates significant long-term maternal risk for cardiovascular disease (CVD) after PE. The mechanisms by which PE and future CVD are associated are unclear, although shared constitutional risk factors likely contribute to the features of endothelial dysfunction characteristic to both. We postulate that PE offers a window of opportunity for the identification of unique markers of dysfunction in the earliest stages of disease that may be used to validate cardiovascular risk screening in the early postpartum period. The studies presented in this thesis provide evidence of changes in circulating factors in women with a recent history of PE. Using blood samples collected within the first year of pregnancy, unique patterns of microRNA expression, enrichment of coagulation system proteins and endothelial progenitor cell dysfunction were described. Many of the described changes appear to be independent of cardiovascular risk. In addition to alterations in circulating factors however, longitudinal postpartum assessments demonstrated that microvascular and cardiac abnormalities were evident in the early periods postpartum after a pre-eclamptic pregnancy. Collectively, the data presented in this thesis reveal that physiological alterations in women with a recent history of PE are not necessarily dependent on clinical parameters of cardiovascular risk, and that resulting dysfunction may be demonstrated within the first year postpartum. Importantly, the biomarkers presented herein are all demonstrated elsewhere in the literature to benefit from lifestyle modification and risk reduction. In closing, the findings of this thesis support a need for cardiovascular risk screening based on obstetrical history, namely after pregnancies complicated by PE.
Resumo:
The objective of this thesis was to determine whether the establishment and operation of an archives services by the Hudson's Bay Company had an effect on the company's ability to carry out document repairs. Data collection methods included reviews of published material, archival records of the Hudson's Bay Company, and semi-structured interviews. The study found that the Hudson's Bay Company's commitment to operating a modern archives service in accordance with accepted archive administration practices had a substantial effect on its ability to carry out document repairs. The principled approach to repair, as practiced by the Public Record Office, was a major influence. A review of secondary sources placed this development squarely within the context of archival developments in 20th century England. Overall, the thesis findings add to the growing conversation about conservation history in England, in particular, archive conservation history as it occurred outside of the Public Record Office in the 20th century, by discussing how some methods of repair that were devised, adopted and extended by the Public Record Office in the 19th and 20th centuries were adopted and applied in the 20th century by a well-established business corporation.
Resumo:
The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.
Resumo:
Brain derived neurotrophic factor (BDNF) is a member of the family of neurotrophins and binds to the tropomyosin-related kinase B (TrkB) receptor. Like other neurotrophic factors, BDNF is involved in the development and differentiation of neurons. Recently, studies have suggested important roles for BDNF in the regulation of energy homeostasis. The paraventricular nucleus (PVN) is critical for normal energy balance contains high levels of both BDNF and TrkB mRNA. Studies have shown that microinjections of BDNF into the PVN increase energy expenditure, suggesting BDNF plays a role in energy homeostasis through direct actions in this hypothalamic nucleus. We used male Sprague-Dawley rats to perform whole-cell current-clamp experiments from PVN neurons in slice preparation. BDNF was bath applied at a concentration of 2nM and caused depolarizations in 54% of neurons (n = 25; mean change in membrane potential: 8.9 ± 1.2 mV), hyperpolarizations in 23% (n = 11; mean change in membrane potential: -6.7 ± 1.4 mV), while the remaining cells tested were unaffected. Previous studies showing effects of BDNF on γ-aminobutyric acid type A (GABAA) mediated neurotransmission in PVN led us to examine if these BDNF-mediated changes in membrane potential were maintained in the presence of tetrodotoxin (TTX) sodium channel blocker (N = 9; 56% depolarized, 22% hyperpolarized, 22% non-responders) and bicuculline (GABAA antagonist) (N = 12; 42% depolarized, 17% hyperpolarized, 41% non-responders), supporting the conclusion that these effects on membrane potential were postsynaptic. We also evaluated the effects of BDNF on these neurons across varying physiologically relevant extracellular glucose concentrations. At 10 mM 23% (n = 11; mean: -6.7 ± 1.4 mV) of PVN neurons hyperpolarized in response to BDNF treatment, whereas at 0.2 mM glucose, 71% showed hyperpolarizing effects (n = 12; mean: -6.3 ± 2.8 mV). Our findings reveal that BDNF has direct impacts on PVN neurons and that these neurons are capable of integrating multiple sources of metabolically relevant input. Our analysis regarding glucose concentrations and their effects on these neurons’ response to other metabolic signals emphasizes the importance of using physiologically relevant conditions for study of central pathways involved in the regulation of energy homeostasis.
Resumo:
The Fes protein tyrosine kinase is abundantly expressed in phagocytic immune cells, including tumor associated macrophages. Fes knockout mice (fes-/-) display enhanced sensitivity to LPS, and this was shown to be associated with increased NF-κB signaling and TNFα production from fes-/- macrophages. Interestingly, tumor onset in the mouse mammary tumor virus (MMTV-Neu) transgenic mouse model of breast cancer is significantly delayed in fes-/- mice, and this was associated with increased frequency of CD11b+ myeloid and CD3+ T cells in the premalignant mammary glands. Recent studies have also implicated Fes in cross-talk between MHC-I and the NF-κB and IRF-3 pathways in macrophages. Signal 3, the production of inflammatory cytokines and Type I interferons downstream of NF-κB and IRF-3 pathways in antigen presenting cells, is considered an important component of T-cell activation, after engagement of T cell receptor by MHC presented antigen (Signal 1) and co-receptors by their ligands (Signal 2). Using a lymphocytic choriomeningitis virus (LCMV) model of immune activation, I show that LPS stimulated fes-/- macrophages promote more robust activation of LCMV antigenspecific CD8+ T cells than wild type macrophages (fes+/+). Furthermore, LPS stimulated fes-/- macrophages showed increased phosphorylation of NF-B and IRF-3. I also showed that Fes colocalizes with MHC-I in dynamic vesicular structures within macrophages. These observations are consistent with a model where Fes regulates Signal 3 in antigen presenting cells through roles in cross-talk between MHC-I and the NF-kB and IRF-3 signaling pathways. This suggests that Fes plays an immune checkpoint role at the level of Signal 3, and that Fes inhibition could promote tumor immunity through increased Signal 3 driven T cell activation.
Resumo:
In order for mammalian fertilization to transpire, spermatozoa must transit through the female reproductive tract and penetrate the outer investments of the oocyte: the cumulus oophorus and the zona pellucida. In order to penetrate the oocyte, spermatozoa must undergo the acrosome reaction. The acrosome reaction results in the exposure of the inner acrosomal membrane (IAM) and proteins that coat it to the extracellular environment. After the acrosome reaction, the IAM becomes the leading edge of spermatozoa undergoing progressive movement. Thus the enzymes which effect lysis of the oocyte investments ought to be located on the IAM. An objective of this study was to identify and characterize enzymatic activity detected on the IAM and provide evidence that they play a role in fertilization. This study also describes procedures for fractionating spermatozoa and isolating the IAM and proteins on its intra- and extra-vesicular surfaces, and describes their development during male gametogenesis. Since the IAM is exposed to the extracellular environment and oviductal milieu after the acrosome reaction, this study also sought to characterize interactions and relationships between factors in the oviductal environment and the enzymes identified on the IAM. The data presented provide evidence that MMP2 and acrosin are co-localized on the IAM, originate from the Golgi apparatus in gametogenesis, and suggest they cooperate in their function. Their localization and results of in vitro fertilization suggests they have a function in zona pellucida penetration. The data also provide evidence that plasminogen, originating from the oviductal epithelium and/or cumulus-oocyte complex, is present in the immediate environment of sperm-egg initial contact and penetration. Additionally, plasminogen interacts with MMP2 and enhances its enzymatic action on the IAM. The data also provide evidence that MMP2 has an important function in penetration of the cumulus oophorus. Holistically, this thesis provides evidence that enzymes on the IAM, originating from the Golgi apparatus in development, have an important function in penetration of the outer investments of the oocyte, and are aided in penetration by plasminogen in the female reproductive tract.
Resumo:
Dense deployment of wireless local area network (WLAN) access points (APs) is an important part of the next generation Wi-Fi and standardization (802.11ax) efforts are underway. Increasing demand for WLAN connectivity motivates such dense deployments, especially in geographical areas with large numbers of users, such as stadiums, large enterprises, multi-tenant buildings, and urban cities. Although densification of WLAN APs guarantees coverage, it is susceptible to increased interference and uncoordinated association of stations (STAs) to APs, which degrade network throughput. Therefore, to improve network throughput, algorithms are proposed in this thesis to optimally coordinate AP associations in the presence of interference. In essence, coordination of APs in dense WLANs (DWLANs) is achieved through coordination of STAs' associations with APs. While existing approaches suggest tuning of APs' beacon powers or using transmit power control (TPC) for association control, here, the signal-to-interference-plus-noise ratio (SINRs) of STAs and the clear channel assessment (CCA) threshold of the 802.11 MAC protocol are employed. The proposed algorithms in this thesis enhance throughput and minimize coverage holes inherent in cell breathing and TPC techniques by not altering the transmit powers of APs, which determine cell coverage. Besides uncoordinated AP associations, unnecessary frequent transmission deferment is envisaged as another problem in DWLANs due to the clear channel assessment aspect of the carrier sensing multiple access collision avoidance (CSMA/CA) scheme in 802.11 standards and the short spatial reuse distance between co-channel APs. To address this problem in addition to AP association coordination, an algorithm is proposed for CCA threshold adjustment in each AP cell, such that CCA threshold used in one cell mitigates transmission deferment in neighboring cells. Performance evaluation reveals that the proposed association optimization algorithms achieve significant gain in throughput when compared with the default strongest signal first (SSF) association scheme in the current 802.11 standard. Also, further gain in throughput is observed when the CCA threshold adjustment is combined with the optimized association. Results show that when STA-AP association is optimized and CCA threshold is adjusted in each cell, throughput improves. Finally, transmission delay and the number of packet re-transmissions due to collision and contention significantly decrease.
Resumo:
Dendritic cells (DCs) secrete cytokines such as interleukin-23 (IL-23) when stimulated with certain Toll-like receptor (TLR) agonists and infected with pathogens such as P. aeruginosa. IL- 23 is a proinflammatory cytokine that plays a critical role in the proliferation and differentiation of the IL-17 producing Th17- CD4 T helper cells. The lack of efficient cytokine production from antigen-presenting cells, such as DCs, can impact CD4 differentiation and thus impair the immune responses against pathogens. Clearance of some bacterial infections, such as Klebsiella pneumonia and Listeria monocytogenes has been shown to be dependent on the induction of IL-23 and therefore, deregulation of these cytokines as a direct result of virus infection may impede immune responses to secondary infections. Here, an inhibition of TLR ligand or P. aeruginosa-induced IL- 23 expression in Lymphocytic Choriomeningitis Virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs) has been demonstrated, indicating that an important function of these cells is disrupted during virus/bacterial coinfection. While production of TNF-α was unaffected in LPS stimulated cells, TNF-α was significantly inhibited in bacterium infected cells by LCMV. Type I IFN in LPS or LCMV infected cell was not detected and therefore, ruling out the possibility of cytokine suppression by Type I IFN. The production of IL-10 was high in BMDCs infected with LCMV and stimulated with LPS or bacteria. Analysis of multiple cytokines produced in this coinfection model demonstrated that LCMV infection impacts specific cytokine production upon LPS or bacterium infection, which may be important for bacterial clearance. This data is important for future immunotherapy use in viral/bacterial coinfection scenarios.