22 resultados para wind tunnel
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
A study was carried out in June/July 1996 in the River Po outflow in the northern Adriatic to investigate spawning of anchovy Engraulis encrasicolus and survival of larvae in relation to food availability and wind mixing. Hydrographic- and bongo net sampling was carried out on 2 grid surveys; one after a period of low winds and settled weather, and the other after an intervening period of strong winds, which resulted in a decrease in water column stratification. The spawning areas of anchovy and the larval distributions were associated with the river outflow plume (most clearly on the second survey grid, after the period of higher winds). Potential food particles for anchovy larvae, primarily copepod nauplii and copepodite stages, were also concentrated in the area influenced by the river outflow. Although there was a nearly 50% reduction in the mean water column abundance of potential food particles between the 2 survey grids, mostly due to a decline in abundance outside the immediate river plume area, there was no significant change in mortality of anchovy larvae between the 2 grids; the exponential decline in numbers of eggs and larvae to 10 mm in length being equivalent to overall mortality rates of 43.2%/d on the first survey and 44.7%/d on the second. The resilience of larval survival under potentially less favourable feeding conditions, following the period of wind mixing, was ascribed, in part, to the maintenance of local water column stratification by the superficial low salinity input from the River Po. This stratification in the immediate outflow area was associated with the presence of concentrated layers of potential food particles (typically >50 particles/L and 1.5 to 2.8 times the mean water column abundance) in the upper 10 m of the water column, coincident with peak numbers of anchovy larvae. However, since there was no evidence for lower larval survival in areas, less influenced by the immediate river outflow plume, a simple direct relationship between enhanced water column stability, improved feeding conditions and larval survival was not supported.
Resumo:
The rapid increase in renewable energy generation from wind has increased concerns about the impacts that wind arrays have on the marine environment and what these impacts mean for society. One method for identifying the impacts of offshore wind farms (OWFs) on human welfare is through the assessment and valuation of ecosystem services. Using an ecosystem services approach, this paper reviews the impacts of OWFs on the ecosystem services delivered by marine environments. During the construction phase, supporting services such as reduced energy capture and nutrient cycling are changed due to the introduction of hard substrate and the reduction in soft sediment habitat at turbine bases. This may lead to changes in all other ecosystem services, both negative and positive. Quantifying these changes, however, is a challenge partly due to data limitations and a lack of clear understanding of the impacts of OWFs on the marine ecosystems. Scientific effort needs to quantitatively explore the impacts of OWFs on ecosystem functionality and the gathering of data that enables the assessment of changes to ecosystem services. Data needed to better quantify and value the impacts of OWFs on ecosystem services are suggested. The development of methods which integrate socioeconomic valuation of ecosystem services into the evaluation of renewable energy devices compliments efforts in assessing the environmental impacts and should enable a holistic assessment of the impact of renewable energy production and greenhouse gas mitigation technologies on the U. K. carbon footprint.