25 resultados para water-dependent ecosystem

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The North Sea ecosystem has recently undergone dramatic changes, observed as altered biomass of individual species spanning a range of life forms from algae to birds, with evidence for an approximate doubling in the abundance of both phytoplankton and benthos as part of a regime shift after 1987. Remarkably, these changes, in part recorded in the Phytoplankton Colour Index of the Continuous Plankton Recorder (CPR) survey, are notable as episodic shifts occurring in 1988/89 and 1998 imposed on a gradual decadal trend. These biological events are shown to be a response to coincident changes in oceanic input and water temperature. Geostrophic transports have been calculated from a hydrographic section across the Rockall Trough, and a time series of seasurface temperature derived from satellite observations. The 2 pulses of oceanic incursion into the North Sea in circa 1988 and 1998 coincided with strong northward advection of anomalously warm water at the edge of the continental shelf.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growing human populations and changing dietary preferences are increasing global demands for fish, adding pressure to concerns over fisheries sustainability. Here we develop and link models of physical, biological and human responses to climate change in 67 marine national exclusive economic zones, which yield approximately 60% of global fish catches, to project climate change yield impacts in countries with different dependencies on marine fisheries. Predicted changes in fish production indicate increased productivity at high latitudes and decreased productivity at low/mid latitudes, with considerable regional variations. With few exceptions, increases and decreases in fish production potential by 2050 are estimated to be <10% (mean C3.4%) from present yields. Among the nations showing a high dependency on fisheries, climate change is predicted to increase productive potential in West Africa and decrease it in South and Southeast Asia. Despite projected human population increases and assuming that per capita fish consumption rates will be maintained1, ongoing technological development in the aquaculture industry suggests that projected global fish demands in 2050 could be met, thus challenging existing predictions of inevitable shortfalls in fish supply by the mid-twenty-first century. This conclusion, however, is contingent on successful implementation of strategies for sustainable harvesting and effective distribution of wild fish products from nations and regions with a surplus to those with a deficit. Changes in management effectiveness2 and trade practices5 will remain the main influence on realized gains or losses in global fish production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the ecosystem of the North Sea may occur as pronounced inter-annual and step-wise shifts as well as gradual trends. Marked inter-annual shifts have occurred at least twice in the last two decades, the late 1980s and the late 1990s, that appear to reflect an increased inflow of oceanic water and species. Numerical modelling has demonstrated a link between altered rates of inflow of oceanic water into the northern North Sea and a regime shift after 1988. In 1989 and 1997 oceanic species not normally found in the North Sea were observed there, suggesting pulses of oceanic water had entered the basin and triggered the subsequent ecosystem change. The oceanic water has origins mainly west of Britain in the Rockall Trough, where the long-term mean volume transport is around 3.7Sv northwards (1Sv=10 super(6)m super(3)s super(1)), but in early 1989 and early 1998 was observed to be more than twice the mean value, reaching over 7Sv. These periods of high transport coinciding with the inferred pulses of oceanic water into the North Sea suggest a connection through the continental shelf edge current. Copyright 2001 International Council for the Exploration of the Sea

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic variability on the European Continental Shelf is dominated by events over the North Atlantic Ocean, and in particular by the North Atlantic Oscillation (NAO). The NAO is essentially a winter phenomenon, and its effects will be felt most strongly by populations for which winter conditions are critical. One example is the copepod Calanus finmarchicus, whose northern North Sea populations overwinter at depth in the North Atlantic. Its annual abundance in this region is strongly dependent on water transports at the end of the winter, and hence on the NAO index. Variations in the NAO give rise to changes in the circulation of the North Atlantic Ocean, with additional perturbations arising from El Ni (n) over tildeo - Southern Oscillation (ENSO) events in the Pacific, and these changes can be delayed by several years because of the adjustment time of the ocean circulation. One measure of the circulation is the latitude of the north wall of the Gulf Stream (GSNW index). Interannual variations in the plankton of the Shelf Seas show strong correlations with the fluctuations of the GSNW index, which are the result of Atlantic-wide atmospheric processes. These associations imply that the interannual variations are climatically induced rather than due to natural fluctuations of the marine ecosystem, and that the zooplankton populations have not been significantly affected by anthropogenic processes such as nutrient enrichment or fishing pressure. While the GSNW index represents a response to atmospheric changes over two or more years, the zooplankton populations correlated with it have generation times of a few weeks. The simplest explanation for the associations between the zooplankton and the GSNW index is that the plankton are responding to weather patterns propagating downstream from the Gulf Stream system. It seems that these meteorological processes operate in the spring. Although it has been suggested that there was a regime shift in the North Sea in the late 1980s, examination of the time-series by the cumulative sum (CUSUM) technique shows that any changes in the zooplankton of the central and northern North Sea are consistent with the background climatic variability. The abundance of total copepods increased during this period but this change does not represent a dramatic change in ecosystem processes. It is possible some change may have occurred at the end of the time-series in the years 1997 and 1998.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Scotia Sea has been a focus of biological- and physical oceanographic study since the Discovery expeditions in the early 1900s. It is a physically energetic region with some of the highest levels of productivity in the Southern Ocean. It is also a region within which there have been greater than average levels of change in upper water column temperature. We describe the results of three cruises transecting the central Scotia Sea from south to north in consecutive years and covering spring, summer and autumn periods. We also report on some community level syntheses using both current-day and historical data from this region. A wide range of parameters were measured during the field campaigns, covering the physical oceanography of the region, air–sea CO2 fluxes, macro- and micronutrient concentrations, the composition and biomass of the nano-, micro- and mesoplankton communities, and the distribution and biomass of Antarctic krill and mesopelagic fish. Process studies examined the effect of iron-stress on the physiology of primary producers, reproduction and egestion in Antarctic krill and the transfer of stable isotopes between trophic layers, from primary consumers up to birds and seals. Community level syntheses included an examination of the biomass-spectra, food-web modelling, spatial analysis of multiple trophic layers and historical species distributions. The spatial analyses in particular identified two distinct community types: a northern warmer water community and a southern cold community, their boundary being broadly consistent with the position of the Southern Antarctic Circumpolar Current Front (SACCF). Temperature and ice cover appeared to be the dominant, over-riding factors in driving this pattern. Extensive phytoplankton blooms were a major feature of the surveys, and were persistent in areas such as South Georgia. In situ and bioassay measurements emphasised the important role of iron inputs as facilitators of these blooms. Based on seasonal DIC deficits, the South Georgia bloom was found to contain the strongest seasonal carbon uptake in the ice-free zone of the Southern Ocean. The surveys also encountered low-production, iron-limited regions, a situation more typical of the wider Southern Ocean. The response of primary and secondary consumers to spatial and temporal heterogeneity in production was complex. Many of the life-cycles of small pelagic organisms showed a close coupling to the seasonal cycle of food availability. For instance, Antarctic krill showed a dependence on early, non-ice-associated blooms to facilitate early reproduction. Strategies to buffer against environmental variability were also examined, such as the prevalence of multiyear life-cycles and variability in energy storage levels. Such traits were seen to influence the way in which Scotia Sea communities were structured, with biomass levels in the larger size classes being higher than in other ocean regions. Seasonal development also altered trophic function, with the trophic level of higher predators increasing through the course of the year as additional predator-prey interactions emerged in the lower trophic levels. Finally, our studies re-emphasised the role that the simple phytoplankton-krill-higher predator food chain plays in this Southern Ocean region, particularly south of the SACCF. To the north, alternative food chains, such as those involving copepods, macrozooplankton and mesopelagic fish, were increasingly important. Continued ocean warming in this region is likely to increase the prevalence of such alternative such food chains with Antarctic krill predicted to move southwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional response diversity is defined as the diversity of responses to environmental change among species that contribute to the same ecosystem function. Because different ecological processes dominate on different spatial and temporal scales, response diversity is likely to be scale dependent. Using three extensive data sets on seabirds, pelagic fish, and zooplankton, we investigate the strength and diversity in the response of seabirds to prey in the North Sea over three scales of ecological organization. Two-stage analyses were used to partition the variance in the abundance of predators and prey among the different scales of investigation: variation from year to year, variation among habitats, and variation on the local patch scale. On the year-to-year scale, we found a strong and synchronous response of seabirds to the abundance of prey, resulting in low response diversity. Conversely, as different seabird species were found in habitats dominated by different prey species, we found a high diversity in the response of seabirds to prey on the habitat scale. Finally, on the local patch scale, seabirds were organized in multispecies patches. These patches were weakly associated with patches of prey, resulting in a weak response strength and a low response diversity. We suggest that ecological similarities among seabird species resulted in low response diversity on the year-to-year scale. On the habitat scale, we suggest that high response diversity was due to interspecific competition and niche segregation among seabird species. On the local patch scale, we suggest that facilitation with respect to the detection and accessibility of prey patches resulted in overlapping distribution of seabirds but weak associations with prey. The observed scale dependencies in response strength and diversity have implications for how the seabird community will respond to different environmental disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertical distribution of decapod larvae off the northwest Portuguese coast was analysed in relation to associated environmental conditions from sampling during a 69 h period around a current meter mooring located on the shelf, approximately 21 km off the coast. Plankton samples were collected every 2 h at the surface with a neuston net and through the water column with a Longhurst Hardy Plankton Recorder (Pro-LHPR), allowing a very detailed resolution of larval vertical distribution. Environmental data (temperature, salinity, and chlorophyll a) were obtained every hour. To investigate the horizontal distribution of decapod larvae in relation to the coast, a plankton-sampling grid was carried out before the 69 h fixed station. Larvae of shelf decapod species were widely distributed over the shelf, while those of inshore species were found much closer to the coast. Decapod larvae (zoeae and megalopae) showed clear diel vertical migrations, only appearing in the upper 20 m at night, a migration that did not appear to be affected by physical conditions in the water column. Larval densities were highly variable, 0.01 to 215 ind. m super(-3) for zoeae and 0 to 93 ind. m super(-3) for megalopae, the zoeae being generally more abundant. The results indicated that during the day larvae accumulate very close to the bottom. The diel vertical migration behaviour is discussed as one of the contributing mechanisms for larval retention over the shelf, even with offshore transport conditions promoted by coastal upwelling, and is hence of major relevance for the recruitment success of decapod species that inhabit inshore and shelf zones of coastal upwelling systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of variables involved in the monitoring of an ecosystem can be high and often one of the first stages in the analysis is to reduce the number of variables. We describe a method developed for geological purposes, using the information theory, that enables selection of the most relevant variables. This technique also allows the examination of the asymmetrical relationships between variables. Applied to a set of physical and biological variables (plankton assemblages in four areas of the North Sea), the method shows that biological variables are more informative than physical variables although the controlling factors are mainly physical (sea surface temperature in winter and spring). Among biological variables, diversity measures and warm-water species assemblages are informative for the state of the North Sea pelagic ecosystems while among physical variables sea surface temperature in late winter and early spring are highly informative. Although often used in bioclimatology, the utilisation of the North Atlantic Oscillation (NAO) index does not seem to provide a lot of information. The method reveals that only the extreme states of this index has an influence on North Sea pelagic ecosystems. The substantial and persistent changes that were detected in the dynamic regime of the North Sea ecosystems and called regime shift are detected by the method and corresponds to the timing of other shifts described in the literature for some European Systems such as the Baltic and the Mediterranean Sea when both physical and biological variables are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The circulation of Atlantic water along the European continental slope, in particular the inflow into the North Sea, influences North Sea water characteristics with consequent changes in the environment affecting plankton community dynamics. The long-term effect of fluctuating oceanographic conditions oil the North Sea, pelagic ecosystem is assessed. It is shown that (i) there are similar regime shifts in the inflow through the northern North Sea and in Sea, Surface Temperature, (ii) long-term phytoplankton trends are influenced by the inflow only in some North Sea regions, and (iii) the spatial variability in chemicophysical and biological parameters highlight the influence of smaller scale processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-term time series of plankton and benthic records in the North Sea indicates an increase in decapods and a decline in their prey species that include bivalves and flatfish recruits. Here, we show that in the southern North Sea the proportion of decapods to bivalves doubled following a temperature-driven, abrupt ecosystem shift during the 1980s. Analysis of decapod larvae in the plankton reveals a greater presence and spatial extent of warm-water species where the increase in decapods is greatest. These changes paralleled the arrival of new species such as the warm-water swimming crab Polybius henslowii now found in the southern North Sea. We suggest that climate-induced changes among North Sea decapods have played an important role in the trophic amplification of a climate signal and in the development of the new North Sea dynamic regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic eutrophication affects the Mediterranean, Black, North and Baltic Seas to various extents. Responses to nutrient loading and methods of monitoring relevant indicators vary regionally, hindering interpretation of ecosystem state changes and preventing a straightforward pan-European assessment of eutrophication symptoms. Here we summarize responses to nutrient enrichment in Europe's seas, comparing existing time-series of selected pelagic (phytoplankton biomass and community composition, turbidity, N:P ratio) and benthic (macro flora and faunal communities, bottom oxygen condition) indicators based on their effectiveness in assessing eutrophication effects. Our results suggest that the Black Sea and Northern Adriatic appear to be recovering from eutrophication due to economic reorganization in the Black Sea catchment and nutrient abatement measures in the case of the Northern Adriatic. The Baltic is most strongly impacted by eutrophication due to its limited exchange and the prevalence of nutrient recycling. Eutrophication in the North Sea is primarily a coastal problem, but may be exacerbated by climatic changes. Indicator interpretation is strongly dependent on sea-specific knowledge of ecosystem characteristics, and no single indicator can be employed to adequately compare eutrophication state between European seas. Communicating eutrophication-related information to policy-makers could be facilitated through the use of consistent indicator selection and monitoring methodologies across European seas. This work is discussed in the context of the European Commission's recently published Marine Strategy Directive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both solar irradiance and primary production have been proposed as independent controls on seawater dimethyl sulphide (DMS) and dimethylsulphoniopropionate (DMSP) concentrations. However, irradiance also drives photosynthesis, and thus influences a complex set of inter-related processes that modulate marine DMS. We investigate the potential inter-relationships between the rate of primary production (carbon assimilation), water-attenuated irradiance and DMS/DMSP dynamics by applying correlation analysis to a high resolution, concurrently sampled in situ data set from a range of latitudes covering multiple biogeochemical provinces from 3 of the 4 Longhurst biogeochemical domains. The combination of primary production (PP) and underwater irradiance (Iz) within a multivariate regression model is able to explain 55% of the variance in DMS concentrations from all depths within the euphotic zone and 66% of the variance in surface DMS concentrations. Contrary to some previous studies we find a variable representing biological processes is necessary to better account for the variance in DMS. We find that the inclusion of Iz accounts for variance in DMS that is independent from the variance explained by PP. This suggests an important role for solar irradiance (beyond the influence of irradiance upon primary production) in mediating the relationship between the productivity of the ecosystem, DMS/DMSP production and ambient seawater DMS concentrations.