3 resultados para volumetric oxygen transfer coefficient

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shipboard measurements of eddy covariance dimethylsulfide (DMS) air–sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air–sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air–sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 2-wk TLm of stepwise-acclimated Thais lapillus (L.) (>20 mm long) was 14.2–16.2%. salinity (S) at 5, 10, 15, and 20°C. The same TLm occurred at 10 °C after direct transfer of snails to the final salinity but stepwise-acclimated small snails (<20 mm) tolerated a significantly lower salinity (12.7%. S). Oxygen consumption rates () fit the allometric equation . Salinity and temperature had a significant effect on , which was highest at 30%. S and depressed at 17.5%. S and at 5°C. Ammonia excretion rates fit the allometric equation . Both salinity and temperature affected . Ammonia excretion was significantly lower at 17.5 %. S than at higher salinities at 10, 15, and 20°C, but did not vary as a function of salinity at 5°C. Primary amines were lost from snails under all conditions without any obvious relationship with temperature or salinity. Primary-amine loss, expressed as a percentage of , was significantly higher at 17.5 %. S than at higher salinities. Oxygen : nitrogen ratios ranged from 4.2–15.6, indicating protein was the primary metabolic substrate, and were highest at 15 °C and lowest at 5 °C. Snails withstood 89 days starvation without mortality at 10°C. Oxygen consumption of snails declined by 28% during starvation due to a 37% decline in dry weight; consequently, weight-specific respiration rate increased by 17%. The intercept (a) for the allometric equations did not change during starvation. Ammonia excretion increased during starvation, and primary-amine loss increased until Day 21, then declined. Oxygen: nitrogen ratios declined from 14 to 8, indicating an increased catabolism of protein during starvation.