22 resultados para vertically vibrated beds
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately 500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity.
Resumo:
The Joint Nature Conservation Committee (JNCC) commissioned this project to generate an improved understanding of the sensitivities of blue mussel (Mytilus edulis) beds, found in UK waters, to pressures associated with human activities in the marine environment. The work will provide an evidence base that will facilitate and support management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. Blue mussel beds are identified as a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities (NERC) Act 2006, as a Priority Marine Feature (PMF) under the Marine (Scotland) Act 2010, and included on the OSPAR (Annex V) list of threatened and declining species and habitats. The purpose of this project was to produce sensitivity assessments for the blue mussel biotopes included within the HPI, PMF and OSPAR habitat definitions, and clearly document the supporting evidence behind the assessments and any differences between them. A total of 20 pressures falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. The review examined seven blue mussel bed biotopes found on littoral sediment and sublittoral rock and sediment. The assessments were based on the sensitivity of M. edulis rather than associated species, as M. edulis was considered the most important characteristic species in blue mussel beds. To develop each sensitivity assessment, the resistance and resilience of the key elements are assessed against the pressure benchmark using the available evidence gathered in this review. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. Blue mussel beds were highly sensitive to a few human activities: • introduction or spread of non-indigenous species (NIS); • habitat structure changes - removal of substratum (extraction); and • physical loss (to land or freshwater habitat). Physical loss of habitat and removal of substratum are particularly damaging pressures, while the sensitivity of blue mussel beds to non-indigenous species depended on the species assessed. Crepidula fornicata and Crassostrea gigas both had the potential to outcompete and replace mussel beds, so resulted in a high sensitivity assessment. Mytilus spp. populations are considered to have a strong ability to recover from environmental disturbance. A good annual recruitment may allow a bed to recovery rapidly, though this cannot always be expected due to the sporadic nature of M. edulis recruitment. Therefore, blue mussel beds were considered to have a 'Medium' resilience (recovery within 2-10 years). As a result, even where the removal or loss of proportion of a mussel bed was expected due to a pressure, a sensitivity of 'Medium' was reported. Hence, most of the sensitivities reported were 'Medium'. It was noted, however, that the recovery rates of blue mussel beds were reported to be anywhere between two years to several decades. In addition, M. edulis is considered very tolerant of a range of physical and chemical conditions. As a result, blue mussel beds were considered to be 'Not sensitive' to changes in temperature, salinity, de-oxygenation, nutrient and organic enrichment, and substratum type, at the benchmark level of pressure. The report found that no distinct differences in overall sensitivity exist between the HPI, PMF and OSPAR definitions. Individual biotopes do however have different sensitivities to pressures, and the OSPAR definition only includes blue mussel beds on sediment. These differences were determined by the position of the habitat on the shore and the sediment type. For example, the infralittoral rock biotope (A3.361) was unlikely to be exposed to pressures that affect sediments. However in the case of increased water flow, mixed sediment biotopes were considered more stable and ‘Not sensitive’ (at the benchmark level) while the remaining biotopes were likely to be affected.
Using a clearly documented, evidence-based approach to create sensitivity assessments allows the assessment basis and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. For every pressure where sensitivity was previously assessed as a range of scores in MB0102, the assessments made by the evidence review have supported one of the MB0102 assessments. The evidence review has reduced the uncertainty around assessments previously undertaken in the MB0102 project (Tillin et al., 2010) by assigning a single sensitivity score to the pressures as opposed to a range. Finally, as blue mussel bed habitats also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.
Resumo:
Results from depth integrated and vertically stratified plankton sampling in the northwestern Adriatic Sea were used for comparison of gut contents of larvae of European anchovy Engraulis encrasicolus with composition and concentration of potential prey in the plankton. Sampling was carried out over a grid of stations both before and after a period of increased wind mixing to investigate changes in food availability and larval feeding success. All larvae had empty guts soon after dusk, indicating daytime feeding and rapid gut clearance. With increasing larval length there was a greater percentage of specimens with empty guts, despite suitable food being available in the plankton for these larger larvae; this suggests differential gut evacuation during sampling-possibly related to the degree of gut development. Larval diet was principally the various developmental stages of copepods, especially calanoid and cyclopoid nauplii, which were preferentially selected by larvae, whereas selection was against harpacticoid nauplii. Lamellibranch larvae and Peridinium were generally abundant in the plankton, but were only present in the gut contents in any number when the preferred dietary organisms were present in the plankton at low concentrations. The number of food organisms in the gut contents increased with concentration of the preferred food organisms in the plankton up to a limit of similar to 50 organisms/l. Within the upper 18 m of the water column, there was a reduction in the proportion of larvae with food in their guts with increasing depth, irrespective of the vertical profile of food concentration. Following a period of wind mixing the composition of the plankton changed. This was reflected in the diet of anchovy larvae, which altered in parallel. There was also an overall 41% decrease in concentration of the preferred food particles of larvae in the plankton following the period of wind mixing, but larvae were still able to maintain their food intake. These results show that anchovy larvae can successfully adapt their diet to a changing prey field and suggest that in the conditions observed in the northern Adriatic, quite radical changes in the feeding environment were probably insufficient to affect overall larval mortality.
Resumo:
A simple sampling device is described which produces thin (1 mm) sections of sediment cores. The sampler has been tested on fine sand of an intertidal sandflat and used to study the vertical distribution, over part of a tidal cycle in August, 1981, of migrating algae in the surface 20 mm of sand. Two species of Diplonies and one of Navicula showed marked changes in vertical distribution as the sandflat was flooded, but the distribution of bacteria in the sime samples did not show any change with tidal state. Spatial separation of different species of harpacticoid oppepods within the surface 20 mm of sand has also been demonstrated using this sampler, and the results suggest that different species may occupy particular fine-scale spatial niches within the sand column. The depth separation of nematode species was less well defined, except for two species with apparently the same feeding mode which were isolated from one another vertically.