81 resultados para variation partitioning

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim Recent studies have suggested that global diatom distributions are not limited by dispersal, in the case of both extant species and fossil species, but rather that environmental filtering explains their spatial patterns. Hubbell's neutral theory of biodiversity provides a framework in which to test these alternatives. Our aim is to test whether the structure of marine phytoplankton (diatoms, dinoflagellates and coccolithophores) assemblages across the Atlantic agrees with neutral theory predictions. We asked: (1) whether intersite variance in phytoplankton diversity is explained predominantly by dispersal limitation or by environmental conditions; and (2) whether species abundance distributions are consistent with those expected by the neutral model. Location Meridional transect of the Atlantic (50 degrees N50 degrees S). Methods We estimated the relative contributions of environmental factors and geographic distance to phytoplankton composition using similarity matrices, Mantel tests and variation partitioning of the species composition based upon canonical ordination methods. We compared the species abundance distribution of phytoplankton with the neutral model using Etienne's maximum-likelihood inference method. Results Phytoplankton communities are slightly more determined by niche segregation (24%), than by dispersal limitation and ecological drift (17%). In 60% of communities, the assumption of neutrality in species' abundance distributions could not be rejected. In tropical zones, where oceanic gyres enclose large stable water masses, most communities showed low species immigration rates; in contrast, we infer that communities in temperate areas, out of oligotrophic gyres, have higher rates of species immigration. Conclusions Phytoplankton community structure is consistent with partial niche assembly and partial dispersal and drift assembly (neutral processes). The role of dispersal limitation is almost as important as habitat filtering, a fact that has been largely overlooked in previous studies. Furthermore, the polewards increase in immigration rates of species that we have discovered is probably caused by water mixing conditions and productivity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review provides insights into the distribution and impact of oestrogens and xeno-oestrogens in the aquatic environment and highlights some significant knowledge gaps in our understanding of endocrine disrupting chemicals. Key areas of uncertainty in the assessment of risk include the role of estuarine sediments in mediating the fate and bioavailability of environmental (xeno)oestrogens (notably their transfer to benthic organisms and estuarine food chains), together with evidence for endocrine disruption in invertebrate populations. Emphasis is placed on using published information to interpret the behaviour and effects of a small number of model compounds thought to contribute to oestrogenic effects in nature; namely, the natural steroid 17 beta -oestradiol (E2) and the synthetic hormone 17 alpha -ethinyloestradiol (EE2), together with the alkyl-phenols octyl- and nonyl-phenol (OP, NP) as oestrogen mimics. Individual sections of the review are devoted to sources and concentrations of (xeno)oestrogens in waterways, sediment partitioning and persistence, bioaccumulation rates and routes, assays and biomarkers of oestrogenicity, and, finally, a synopsis of reproductive and ecological effects in aquatic species.