7 resultados para utilisation de l’ordinateur
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Methanol is ubiquitous in seawater and the most abundant oxygenated volatile organic compound (OVOC) in the atmosphere where it influences oxidising capacity and ozone formation. Marine methylotrophic bacteria utilise methanol in seawater both as an energy and/or growth substrate. This work represents the first fully resolved seasonal study of marine microbial methanol uptake dynamics. Rates of microbial methanol dissimilation in coastal surface waters of the UK varied between 0.7 – 11.2 nmol l-1 h-1 and reached a maximum in February. Rates of microbial methanol assimilation varied between 0.04 – 2.64 x 10-2 nmol l-1 h-1 and reached a maximum in August. Temporal variability in microbial methanol uptake rates shows that methanol assimilation and dissimilation display opposing seasonal cycles, although overall <1% of methanol was assimilated. Correlative approaches with 16S rRNA pyrosequencing data suggested that bacteria of the SAR11 clade and Rhodobacterales could be significantly influencing rates of methanol dissimilation and assimilation, respectively, at station L4 in the western English Channel
Resumo:
Methanol is ubiquitous in seawater and the most abundant oxygenated volatile organic compound (OVOC) in the atmosphere where it influences oxidising capacity and ozone formation. Marine methylotrophic bacteria utilise methanol in seawater both as an energy and/or growth substrate. This work represents the first fully resolved seasonal study of marine microbial methanol uptake dynamics. Rates of microbial methanol dissimilation in coastal surface waters of the UK varied between 0.7 – 11.2 nmol l-1 h-1 and reached a maximum in February. Rates of microbial methanol assimilation varied between 0.04 – 2.64 x 10-2 nmol l-1 h-1 and reached a maximum in August. Temporal variability in microbial methanol uptake rates shows that methanol assimilation and dissimilation display opposing seasonal cycles, although overall <1% of methanol was assimilated. Correlative approaches with 16S rRNA pyrosequencing data suggested that bacteria of the SAR11 clade and Rhodobacterales could be significantly influencing rates of methanol dissimilation and assimilation, respectively, at station L4 in the western English Channel
Resumo:
At the start of the industrial revolution (circa 1750) the atmospheric concentration of carbon dioxide (CO2) was around 280 ppm. Since that time the burning of fossil fuel, together with other industrial processes such as cement manufacture and changing land use, has increased this value to 400 ppm, for the first time in over 3 million years. With CO2 being a potent greenhouse gas, the consequence of this rise for global temperatures has been dramatic, and not only for air temperatures. Global Sea Surface Temperature (SST) has warmed by 0.4–0.8 °C during the last century, although regional differences are evident (IPCC, 2007). This rise in atmospheric CO2 levels and the resulting global warming to some extent has been ameliorated by the oceanic uptake of around one quarter of the anthropogenic CO2 emissions (Sabine et al., 2004). Initially this was thought to be having little or no impact on ocean chemistry due to the capacity of the ocean’s carbonate buffering system to neutralise the acidity caused when CO2 dissolves in seawater. However, this assumption was challenged by Caldeira and Wickett (2005) who used model predictions to show that the rate at which carbonate buffering can act was far too slow to moderate significant changes to oceanic chemistry over the next few centuries. Their model predicted that since pre-industrial times, ocean surface water pH had fallen by 0.1 pH unit, indicating a 30% increase in the concentration of H+ ions. Their model also showed that the pH of surface waters could fall by up to 0.4 units before 2100, driven by continued and unabated utilisation of fossil fuels. Alongside increasing levels of dissolved CO2 and H+ (reduced pH) an increase in bicarbonate ions together with a decrease in carbonate ions occurs. These chemical changes are now collectively recognised as “ocean acidification”. Concern now stems from the knowledge that concentrations of H+, CO2, bicarbonate and carbonate ions impact upon many important physiological processes vital to maintaining health and function in marine organisms. Additionally, species have evolved under conditions where the carbonate system has remained relatively stable for millions of years, rendering them with potentially reduced capacity to adapt to this rapid change. Evidence suggests that, whilst the impact of ocean acidification is complex, when considered alongside ocean warming the net effect on the health and productivity of the oceans will be detrimental.
Resumo:
The number of variables involved in the monitoring of an ecosystem can be high and often one of the first stages in the analysis is to reduce the number of variables. We describe a method developed for geological purposes, using the information theory, that enables selection of the most relevant variables. This technique also allows the examination of the asymmetrical relationships between variables. Applied to a set of physical and biological variables (plankton assemblages in four areas of the North Sea), the method shows that biological variables are more informative than physical variables although the controlling factors are mainly physical (sea surface temperature in winter and spring). Among biological variables, diversity measures and warm-water species assemblages are informative for the state of the North Sea pelagic ecosystems while among physical variables sea surface temperature in late winter and early spring are highly informative. Although often used in bioclimatology, the utilisation of the North Atlantic Oscillation (NAO) index does not seem to provide a lot of information. The method reveals that only the extreme states of this index has an influence on North Sea pelagic ecosystems. The substantial and persistent changes that were detected in the dynamic regime of the North Sea ecosystems and called regime shift are detected by the method and corresponds to the timing of other shifts described in the literature for some European Systems such as the Baltic and the Mediterranean Sea when both physical and biological variables are considered.
Resumo:
Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, µmol O2 g−1 tissue dry weight h−1) than corals in control conditions (28.6±7.30 SE µmol O2 g−1 tissue dry weight h−1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.
Resumo:
Accurate quantification of carbohydrate content of biomass is crucial for many bio-refining applications. The standardised NREL two stage complete acid hydrolysis protocol was evaluated for its suitability towards seaweeds, as the protocol was originally developed for lignocellulosic feedstocks. The compositional differences between the major polysaccharides in seaweeds and terrestrial plants, and seaweed’s less recalcitrant nature, could suggest the NREL based protocol may be too extreme. Underestimations of carbohydrate content through the degradation of liberated sugars into furan compounds may yield erroneous data. An optimised analysis method for carbohydrate quantification in the brown seaweed L. digitata was thus developed and evaluated. Results from this study revealed stage 1 of the assay was crucial for optimisation however stage 2 proved to be less crucial. The newly optimised protocol for L. digitata yielded 210 mg of carbohydrate per g of biomass compared to a yield of only 166 mg/g from the original NREL protocol. Use of the new protocol on two other species of seaweed also gave consistent results; higher carbohydrate and significantly lower sugar degradation products generation than the original protocol. This study demonstrated the importance of specific individual optimisations of the protocol for accurate sugar quantification, particularly for different species of seaweed