24 resultados para uncertainties

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 1970’s and 1980’s, the late Dr Norman Holme undertook extensive towed sledge surveys in the English Channel and some in the Irish Sea. Only a minority of the resulting images were analysed and reported before his death in 1989 but logbooks, video and film material has been archived in the National Marine Biological Library (NMBL) in Plymouth. A scoping study was therefore commissioned by the Joint Nature Conservation Committee and as a part of the Mapping European Seabed Habitats (MESH) project to identify the value of the material archived and the procedure and cost to undertake further work. The results of the scoping study are: 1. NMBL archives hold 106 videotapes (reel-to-reel Sony HD format) and 59 video cassettes (including 15 from the Irish Sea) in VHS format together with 90 rolls of 35 mm colour transparency film (various lengths up to about 240 frames per film). These are stored in the Archive Room, either in a storage cabinet or in original film canisters. 2. Reel-to-reel material is extensive and had already been selectively copied to VHS cassettes. The cost of transferring it to an accepted ‘long-life’ medium (Betamax) would be approximately £15,000. It was not possible to view the tapes as a suitable machine was not located. The value of the tapes is uncertain but they are likely to become beyond salvation within one to two years. 3. Video cassette material is in good condition and is expected to remain so for several more years at least. Images viewed were generally of poor quality and the speed of tow often makes pictures blurred. No immediate action is required. 4. Colour transparency films are in good condition and the images are very clear. They provide the best source of information for mapping seabed biotopes. They should be scanned to digital format but inexpensive fast copying is problematic as there are no between-frame breaks between images and machines need to centre the image based on between-frame breaks. The minimum cost to scan all of the images commercially is approximately £6,000 and could be as much as £40,000 on some quotations. There is a further cost in coding and databasing each image and, all-in-all it would seem most economic to purchase a ‘continuous film’ scanner and undertake the work in-house. 5. Positional information in ships logs has been matched to films and to video tapes. Decca Chain co-ordinates recorded in the logbooks have been converted to latitude and longitude (degrees, minutes and seconds) and a further routine developed to convert to degrees and decimal degrees required for GIS mapping. However, it is unclear whether corrections to Decca positions were applied at the time the position was noted. Tow tracks have been mapped onto an electronic copy of a Hydrographic Office chart. 6. The positions of start and end of each tow were entered to a spread sheet so that they can be displayed on GIS or on a Hydrographic Office Chart backdrop. The cost of the Hydrographic Office chart backdrop at a scale of 1:75,000 for the whole area was £458 incl. VAT. 7. Viewing all of the video cassettes to note habitats and biological communities, even by an experienced marine biologist, would take at least in the order of 200 hours and is not recommended. English Channel towed sledge seabed images. Phase 1: scoping study and example analysis. 6 8. Once colour transparencies are scanned and indexed, viewing to identify seabed habitats and biological communities would probably take about 100 hours for an experienced marine biologist and is recommended. 9. It is expected that identifying biotopes along approximately 1 km lengths of each tow would be feasible although uncertainties about Decca co-ordinate corrections and exact positions of images most likely gives a ±250 m position error. More work to locate each image accurately and solve the Decca correction question would improve accuracy of image location. 10. Using codings (produced by Holme to identify different seabed types), and some viewing of video and transparency material, 10 biotopes have been identified, although more would be added as a result of full analysis. 11. Using the data available from the Holme archive, it is possible to populate various fields within the Marine Recorder database. The overall ‘survey’ will be ‘English Channel towed video sled survey’. The ‘events’ become the 104 tows. Each tow could be described as four samples, i.e. the start and end of the tow and two areas in the middle to give examples along the length of the tow. These samples would have their own latitude/longitude co-ordinates. The four samples would link to a GIS map. 12. Stills and video clips together with text information could be incorporated into a multimedia presentation, to demonstrate the range of level seabed types found along a part of the northern English Channel. More recent images taken during SCUBA diving of reef habitats in the same area as the towed sledge surveys could be added to the Holme images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) mission offers a novel approach to the provision of key scientific data with unprecedented radiometric accuracy for Earth Observation (EO) and solar studies, which will also establish well-calibrated reference targets/standards to support other EO missions. This paper presents the TRUTHS mission and its objectives. TRUTHS will be the first satellite mission to calibrate its EO instrumentation directly to SI in orbit, overcoming the usual uncertainties associated with drifts of sensor gain and spectral shape by using an electrical rather than an optical standard as the basis of its calibration. The range of instruments flown as part of the payload will also provide accurate input data to improve atmospheric radiative transfer codes by anchoring boundary conditions, through simultaneous measurements of aerosols, particulates and radiances at various heights. Therefore, TRUTHS will significantly improve the performance and accuracy of EO missions with broad global or operational aims, as well as more dedicated missions. The provision of reference standards will also improve synergy between missions by reducing errors due to different calibration biases and offer cost reductions for future missions by reducing the demands for on-board calibration systems. Such improvements are important for the future success of strategies such as Global Monitoring for Environment and Security (GMES) and the implementation and monitoring of international treaties such as the Kyoto Protocol. TRUTHS will achieve these aims by measuring the geophysical variables of solar and lunar irradiance, together with both polarised and unpolarised spectral radiance of the Moon, Earth and its atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The particulate optical backscattering coefficient (bbp) is a fundamental optical property that allows monitoring of marine suspended particles both in situ and from space. Backscattering measurements in the open ocean are still scarce, however, especially in oligotrophic regions. Consequently, uncertainties remain in bbp parameterizations as well as in satellite estimates of bbp. In an effort to reduce these uncertainties, we present and analyze a dataset collected in surface waters during the 19th Atlantic Meridional Transect. Results show that the relationship between particulate beam-attenuation coefficient (cp) and chlorophyll-a concentration was consistent with published bio-optical models. In contrast, the particulate backscattering per unit of chlorophyll-a and per unit of cp were higher than in previous studies employing the same sampling methodology. These anomalies could be due to a bias smaller than the current uncertainties in bbp. If that was the case, then the AMT19 dataset would confirm that bbp:cp is remarkably constant over the surface open ocean. A second-order decoupling between bbp and cp was, however, evident in the spectral slopes of these coefficients, as well as during diel cycles. Overall, these results emphasize the current difficulties in obtaining accurate bbp measurements in the oligotrophic ocean and suggest that, to first order, bbp and cp are coupled in the surface open ocean, but they are also affected by other geographical and temporal variations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of Earth from space have been made for over 40 years and have contributed to advances in many aspects of climate science. However, attempts to exploit this wealth of data are often hampered by a lack of homogeneity and continuity and by insufficient understanding of the products and their uncertainties. There is, therefore, a need to reassess and reprocess satellite datasets to maximize their usefulness for climate science. The European Space Agency has responded to this need by establishing the Climate Change Initiative (CCI). The CCI will create new climate data records for (currently) 13 essential climate variables (ECVs) and make these open and easily accessible to all. Each ECV project works closely with users to produce time series from the available satellite observations relevant to users' needs. A climate modeling users' group provides a climate system perspective and a forum to bring the data and modeling communities together. This paper presents the CCI program. It outlines its benefit and presents approaches and challenges for each ECV project, covering clouds, aerosols, ozone, greenhouse gases, sea surface temperature, ocean color, sea level, sea ice, land cover, fire, glaciers, soil moisture, and ice sheets. It also discusses how the CCI approach may contribute to defining and shaping future developments in Earth observation for climate science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past years have seen the development of different approaches to detect phytoplankton groups from space. One of these methods, the PHYSAT one, is empirically based on reflectance anomalies. Despite observations in good agreement with in situ measurements, the underlying theoretical explanation of the method is still missing and needed by the ocean color community as it prevents improvements of the methods and characterization of uncertainties on the inversed products. In this study, radiative transfer simulations are used in addition to in situ measurements to understand the organization of the signals used in PHYSAT. Sensitivity analyses are performed to assess the impact of the variability of the following three parameters on the reflectance anomalies: specific phytoplankton absorption, colored dissolved organic matter absorption, and particles backscattering. While the later parameter explains the largest part of the anomalies variability, results show that each group is generally associated with a specific bio-optical environment which should be considered to improve methods of phytoplankton groups detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite its fundamental role in controlling the Earth's climate, present estimates of global organic carbon export to the deep sea are affected by relatively large uncertainties. These uncertainties are due to lack of observations as well as disagreement among methods and assumptions used to estimate carbon export. Complementary observations are thus needed to reduce these uncertainties. Here we show that optical backscattering measured by Bio-Argo floats can detect a seasonal carbon export flux in the Norwegian Sea. This export was most likely due to small particles (i.e., 0.2–20 μm), was comparable to published export values, and contributed to long-term carbon sequestration. Our findings highlight the importance of small particles and of physical mixing in the biological carbon pump and support the use of autonomous platforms as tools to improve our mechanistic understanding of the ocean carbon cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite-based remote sensing of active fires is the only practical way to consistently and continuously monitor diurnal fluctuations in biomass burning from regional, to continental, to global scales. Failure to understand, quantify, and communicate the performance of an active fire detection algorithm, however, can lead to improper interpretations of the spatiotemporal distribution of biomass burning, and flawed estimates of fuel consumption and trace gas and aerosol emissions. This work evaluates the performance of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Thermal Anomaly (FTA) detection algorithm using seven months of active fire pixels detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) across the Central African Republic (CAR). Results indicate that the omission rate of the SEVIRI FTA detection algorithm relative to MODIS varies spatially across the CAR, ranging from 25% in the south to 74% in the east. In the absence of confounding artifacts such as sunglint, uncertainties in the background thermal characterization, and cloud cover, the regional variation in SEVIRI's omission rate can be attributed to a coupling between SEVIRI's low spatial resolution detection bias (i.e., the inability to detect fires below a certain size and intensity) and a strong geographic gradient in active fire characteristics across the CAR. SEVIRI's commission rate relative to MODIS increases from 9% when evaluated near MODIS nadir to 53% near the MODIS scene edges, indicating that SEVIRI errors of commission at the MODIS scene edges may not be false alarms but rather true fires that MODIS failed to detect as a result of larger pixel sizes at extreme MODIS scan angles. Results from this work are expected to facilitate (i) future improvements to the SEVIRI FTA detection algorithm; (ii) the assimilation of the SEVIRI and MODIS active fire products; and (iii) the potential inclusion of SEVIRI into a network of geostationary sensors designed to achieve global diurnal active fire monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interlaboratory comparison (ILC) was conducted to evaluate the proficiency of multiple laboratories to quantify dimethylsulfide (DMS) in aqueous solution. Ten participating laboratories were each supplied with blind duplicate test solutions containing dimethylsulfoniopropionate hydrochloride (DMSP HCl) dissolved in acidified artificial seawater. The test solutions were prepared by the coordinating laboratory from a DMSP HCl reference material that was synthesized and purity certified for this purpose. A concentration range was specified for the test solutions and the participating laboratories were requested to dilute them as required for their analytical procedure, together with the addition of excess alkali under gas-tight conditions to convert the DMSP to DMS. Twenty-two DMS concentrations and their estimated expanded measurement uncertainties (95% confidence level) were received from the laboratories. With two exceptions, the within-laboratory variability was 5% or less and the between-laboratory variability was ~ 25%. The magnitude of expanded measurement uncertainties reported from all participants ranged from 1% to 33% relative to the result. The information gained from this pilot ILC indicated the need for further test sample distribution studies of this type so that participating laboratories can identify systematic errors in their analysis procedures and realistically evaluate their measurement uncertainty. The outcome of ILC studies provides insights into the comparability of data in the global surface seawater DMS database.