10 resultados para trend-cycle decomposition

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spawning temperature preferences for sardine (Sardina pilchardus) in the eastern North Atlantic were determined from field data. These were compared with climatological temperature cycles (1986-2002) derived from satellite data by geographical region, to predict spawning seasons. Optimum spawning temperatures were determined as 14.0-15.0oC from the English Channel to Portugal and 16.0–18.0oC for all north-west African regions. Spawning seasons were closely related to the general latitudinal trend of the annual temperature cycle, with modification by upwelling in the western Iberian and north-west African regions. Some differences between temperature-based spawning season predictions and field observations were related to variations in seasonal plankton production. Correlations in the annual time-series of favourable spawning temperatures suggested relatively strong linkages between the southern areas from Portugal to Senegal. There was no consistent relationship between annual variations in duration of temperature-predicted spawning seasons and observed field abundance of eggs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic similar to 0.55 Ma, despite oxygenation of Earth's atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H2S-rich conditions) along productive continental margins. Today, sustained biotic H2S production requires NO3- depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N-2-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO3- with denitrification in lower anoxic waters, and N-2-fixation- driven production overlying euxinia. Interchange between these states likely explains the varying H2S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.