4 resultados para travel and tourism

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Nassau grouper, Epinephelus striatus (Bloch, 1792), is an endangered species that has been historically overexploited in numerous fisheries throughout its range in the Caribbean and tropical West Atlantic. Data relating fishery exploitation levels to stock abundance of the species are deficient, and protective regulations for the Nassau grouper are yet to be implemented in the Turks and Caicos Islands (TCI). The goal of this study was to conduct a stock assessment and evaluate the exploitation status of the Nassau grouper in the TCI. Materials and methods. Calibrated length cohort analysis was applied to published fisheries data on Nassau grouper landings in the TCI. The total lengths of Nassau groupers among the catches of spearfishers, lobster trappers, and deep sea fishers on the island of South Caicos during 2006 and 2008 were used with estimates of growth, natural mortality, and total annual landings to derive exploitation benchmarks. Results. The TCI stock experienced low to moderate fishing mortality (0.28, 0.18) and exploitation rates (0.49, 0.38) during the period of the study (2006, 2008). However, 21.2%-64.4% of all landings were reproductively immature. Spearfishing appeared to contribute most to fishing mortality relative to the use of lobster traps or hydraulic reels along bank drop-offs. Conclusion. In comparison with available fisheries data for the wider Caribbean, the results reveal the TCI as one of the remaining sites, in addition to the Bahamas, with a substantial Nassau grouper stock. In light of increasing development and tourism in the TCI, continued monitoring is essential to maintain sustainable harvesting practices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmful algal blooms (HAB) occur worldwide and cause health problems and economic damage to fisheries and tourism. Monitoring for toxic algae is therefore essential but is based primarily on light microscopy, which is time consuming and can be limited by insufficient morphological characters such that more time is needed to examine critical features with electron microscopy. Monitoring with molecular tools is done in only a few places world-wide. EU FP7 MIDTAL (Microarray Detection of Toxic Algae) used SSU and LSU rRNA genes as targets on microarrays to identify toxic species. In order to comply with current monitoring requirements to report cell numbers as the relevant threshold measurement to trigger closure of fisheries, it was necessary to calibrate our microarray to convert the hybridisation signal obtained to cell numbers. Calibration curves for two species of Pseudo-nitzschia for use with the MIDTAL microarray are presented to obtain cell numbers following hybridisation. It complements work presented by Barra et al. (2012b. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1330-1v) for two other Pseudo-nitzschia spp., Dittami and Edvardsen (2012a. J. Phycol. 48, 1050) for Pseudochatonella, Blanco et al. (2013. Harmful Algae 24, 80) for Heterosigma, McCoy et al. (2013. FEMS. doi: 10.1111/1574-6941.12277) for Prymnesium spp., Karlodinium veneficum, and cf. Chatonella spp. and Taylor et al. (2014. Harmful Algae, in press) for Alexandrium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.