7 resultados para teterogenic exposures

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2 ) concentrations has supported the view that copepods are 'winners' under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage-specific responses to pCO2 (385-6000 μatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 μatm (year 2100 scenario) with LC50 at 1084 μatm pCO2 . In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations ≥3000 μatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 μatm pCO2 . This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life-cycle approach to make species-level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mussels tolerant to seawater pH's that are projected to occur by 2300 due to ocean acidification.•Exposure to pH 6.50 reduced mussel immune response, yet in the absence of a pathogen.•Subsequent pathogenic challenge led to a reversal of immune suppression at pH 6.50.•Study highlights the importance of undertaking multiple stressor exposures.•Shows a need to consider physiological trade-offs and measure responses functionally

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocrine disruption has rarely been reported in field populations of the edible cockle and the context with the general health of the shellfish is unclear. This study examined the reproductive state of two Cerastoderma edule populations over a 6-month period to assess their reproductive condition, the incidence of intersex and presence of parasitic infection. A further seven native sites from south-west England were examined during the peak reproductive season to identify the presence of intersex within the region. Laboratory exposures of organisms collected from field populations showed a significantly female-biased sex ratio compared with controls when exposed to the endocrine disrupting chemicals, bisphenol-A (nominal concentration: 0.1 µg L−1) and 17β-oestradiol (nominal concentration: 0.1 µg L−1), but none of the chemical exposures induced intersex. Intersex was revealed in seven out of the nine native populations of C. edule sampled at peak reproductive season. The highest incidence and most severe case of intersex were reported at Lower Anderton on the River Tamer which also had a significantly female-biased sex ratio. Additionally, the dominant trematode family was the Bucephalaidae. Parasitic infection influences the maturity of C. edule by lowering both mean gonad index and condition index. These results suggest that endocrine disrupting chemicals could be contributing factors towards the development of intersex in C. edule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocrine disruption has rarely been reported in field populations of the edible cockle and the context with the general health of the shellfish is unclear. This study examined the reproductive state of two Cerastoderma edule populations over a 6-month period to assess their reproductive condition, the incidence of intersex and presence of parasitic infection. A further seven native sites from south-west England were examined during the peak reproductive season to identify the presence of intersex within the region. Laboratory exposures of organisms collected from field populations showed a significantly female-biased sex ratio compared with controls when exposed to the endocrine disrupting chemicals, bisphenol-A (nominal concentration: 0.1 µg L−1) and 17β-oestradiol (nominal concentration: 0.1 µg L−1), but none of the chemical exposures induced intersex. Intersex was revealed in seven out of the nine native populations of C. edule sampled at peak reproductive season. The highest incidence and most severe case of intersex were reported at Lower Anderton on the River Tamer which also had a significantly female-biased sex ratio. Additionally, the dominant trematode family was the Bucephalaidae. Parasitic infection influences the maturity of C. edule by lowering both mean gonad index and condition index. These results suggest that endocrine disrupting chemicals could be contributing factors towards the development of intersex in C. edule.