61 resultados para temporal niche
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.
Resumo:
Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.
Resumo:
The Continuous Plankton Recorder survey provides pan-oceanic data on geographic distribution, species composition, seasonal cycles of abundance, and long-term change during the last 70 years. In this paper we compare and contrast some of the historic data-analytic protocols of the survey, focusing primarily on the various means by which spatio-temporal information in CPR data has been exposed. Relative strengths and limitations are assessed, followed by suggestions for future approaches to the visualisation and summarising of CPR data.
Resumo:
An historical data set, collected in 1958 by Southward and Crisp, was used as a baseline for detecting change in the abundances of species in the rocky intertidal of Ireland. In 2003, the abundances of each of 27 species was assessed using the same methodologies (ACFOR [which stands for the categories: abundant, common, frequent, occasional and rare] abundance scales) at 63 shores examined in the historical study. Comparison of the ACFOR data over a 45-year period, between the historical survey and re-survey, showed statistically significant changes in the abundances of 12 of the 27 species examined. Two species (one classed as northern and one introduced) increased significantly in abundance while ten species (five classed as northern, one classed as southern and four broadly distributed) decreased in abundance. The possible reasons for the changes in species abundances were assessed not only in the context of anthropogenic effects, such as climate change and commercial exploitation, but also of operator error. The error or differences recorded among operators (i.e. research scientists) when assessing species abundance using ACFOR categories was quantified on four shores. Significant change detected in three of the 12 species fell within the margin of operator error. This effect of operator may have also contributed to the results of no change in the other 15 species between the two census periods. It was not possible to determine the effect of operator on our results, which can increase the occurrence of a false positive (Type 1) or of a false negative (Type 2) outcome
Resumo:
Production rates and production/biomass ratios have been estimated for a large number of macrobenthic species (Hargrave, 1977; Robertson, 1979). The usefulness of such estimates is limited by a lack of information on their temporal and spatial stability; we are aware of only one study (Sarvala, 1980) in which production has been estimated for more than one year. The present study investigates the stability of the production (P), biomass (B) and P/B values of two polychaete species, Nephtys hombergi Savigny and Ampharete acutifrons (Grube), over a 5-year period.