8 resultados para statistical spatial analysis
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The Scotia Sea has been a focus of biological- and physical oceanographic study since the Discovery expeditions in the early 1900s. It is a physically energetic region with some of the highest levels of productivity in the Southern Ocean. It is also a region within which there have been greater than average levels of change in upper water column temperature. We describe the results of three cruises transecting the central Scotia Sea from south to north in consecutive years and covering spring, summer and autumn periods. We also report on some community level syntheses using both current-day and historical data from this region. A wide range of parameters were measured during the field campaigns, covering the physical oceanography of the region, air–sea CO2 fluxes, macro- and micronutrient concentrations, the composition and biomass of the nano-, micro- and mesoplankton communities, and the distribution and biomass of Antarctic krill and mesopelagic fish. Process studies examined the effect of iron-stress on the physiology of primary producers, reproduction and egestion in Antarctic krill and the transfer of stable isotopes between trophic layers, from primary consumers up to birds and seals. Community level syntheses included an examination of the biomass-spectra, food-web modelling, spatial analysis of multiple trophic layers and historical species distributions. The spatial analyses in particular identified two distinct community types: a northern warmer water community and a southern cold community, their boundary being broadly consistent with the position of the Southern Antarctic Circumpolar Current Front (SACCF). Temperature and ice cover appeared to be the dominant, over-riding factors in driving this pattern. Extensive phytoplankton blooms were a major feature of the surveys, and were persistent in areas such as South Georgia. In situ and bioassay measurements emphasised the important role of iron inputs as facilitators of these blooms. Based on seasonal DIC deficits, the South Georgia bloom was found to contain the strongest seasonal carbon uptake in the ice-free zone of the Southern Ocean. The surveys also encountered low-production, iron-limited regions, a situation more typical of the wider Southern Ocean. The response of primary and secondary consumers to spatial and temporal heterogeneity in production was complex. Many of the life-cycles of small pelagic organisms showed a close coupling to the seasonal cycle of food availability. For instance, Antarctic krill showed a dependence on early, non-ice-associated blooms to facilitate early reproduction. Strategies to buffer against environmental variability were also examined, such as the prevalence of multiyear life-cycles and variability in energy storage levels. Such traits were seen to influence the way in which Scotia Sea communities were structured, with biomass levels in the larger size classes being higher than in other ocean regions. Seasonal development also altered trophic function, with the trophic level of higher predators increasing through the course of the year as additional predator-prey interactions emerged in the lower trophic levels. Finally, our studies re-emphasised the role that the simple phytoplankton-krill-higher predator food chain plays in this Southern Ocean region, particularly south of the SACCF. To the north, alternative food chains, such as those involving copepods, macrozooplankton and mesopelagic fish, were increasingly important. Continued ocean warming in this region is likely to increase the prevalence of such alternative such food chains with Antarctic krill predicted to move southwards.
Resumo:
The yield in organic farming is generally much lower than its potential, which is due to its specificity. The objective of the present study was to quantify the yield spatial variation of wheat and relate it to soil parameters in an organic farm located in the north of the Negev Desert. Soil samples were gathered in a triangular grid at three time intervals. Yields were measured at 73 georeferenced points before the actual harvest. Several thematic maps of soil and yield parameters were produced using geographic information system and geostatistical methods. The strongest spatial correlation was found in the weight of 1000 grains and the weakest was in carbon flow. Temporal relationships were found between soil nitrate concentration, soil water content, and leaf area index. Wheat yield varied from 1.11 to 2.84 Mg ha(-1) and this remarkable variation indicates that the spatial analysis of soil and yield parameters is significant in organic agriculture.
Resumo:
We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock
Resumo:
Coccolithophores are the largest source of calcium carbonate in the oceans and are considered to play an important role in oceanic carbon cycles. Current methods to detect the presence of coccolithophore blooms from Earth observation data often produce high numbers of false positives in shelf seas and coastal zones due to the spectral similarity between coccolithophores and other suspended particulates. Current methods are therefore unable to characterise the bloom events in shelf seas and coastal zones, despite the importance of these phytoplankton in the global carbon cycle. A novel approach to detect the presence of coccolithophore blooms from Earth observation data is presented. The method builds upon previous optical work and uses a statistical framework to combine spectral, spatial and temporal information to produce maps of coccolithophore bloom extent. Validation and verification results for an area of the north east Atlantic are presented using an in situ database (N = 432) and all available SeaWiFS data for 2003 and 2004. Verification results show that the approach produces a temporal seasonal signal consistent with biological studies of these phytoplankton. Validation using the in situ coccolithophore cell count database shows a high correct recognition rate of 80% and a low false-positive rate of 0.14 (in comparison to 63% and 0.34 respectively for the established, purely spectral approach). To guide its broader use, a full sensitivity analysis for the algorithm parameters is presented.