5 resultados para species recovery
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The honeycomb reef worm Sabellaria alveolata is recognised as being an important component of intertidal communities. It is a priority habitat within the UK Biodiversity Action Plan and as a biogenic reef forming species is covered by Annex 1 of the EC habitats directive. S. alveolata has a lusitanean (southern) distribution, being largely restricted to the south and west coasts of England. A broad-scale survey of S. alveolata distribution along the north-west coasts was undertaken in 2003/2004. These records were then compared with previous distribution records, mainly those collected by Cunningham in 1984. More detailed mapping was carried out at Hilbre Island at the mouth of the River Dee, due to recent reports that S. alveolata had become re-established there after a long absence.
Resumo:
During recent decades anthropogenic activities have dramatically impacted the Black Sea ecosystem. High levels of riverine nutrient input during the 1970s and 1980s caused eutrophic conditions including intense algal blooms resulting in hypoxia and the subsequent collapse of benthic habitats on the northwestern shelf. Intense fishing pressure also depleted stocks of many apex predators, contributing to an increase in planktivorous fish that are now the focus of fishing efforts. Additionally, the Black Sea's ecosystem changed even further with the introduction of exotic species. Economic collapse of the surrounding socialist republics in the early 1990s resulted in decreased nutrient loading which has allowed the Black Sea ecosystem to start to recover, but under rapidly changing economic and political conditions, future recovery is uncertain. In this study we use a multidisciplinary approach to integrate information from socio-economic and ecological systems to model the effects of future development scenarios on the marine environment of the northwestern Black Sea shelf. The Driver–Pressure–State-Impact-Response framework was used to construct conceptual models, explicitly mapping impacts of socio-economic Drivers on the marine ecosystem. Bayesian belief networks (BBNs), a stochastic modelling technique, were used to quantify these causal relationships, operationalise models and assess the effects of alternative development paths on the Black Sea ecosystem. BBNs use probabilistic dependencies as a common metric, allowing the integration of quantitative and qualitative information. Under the Baseline Scenario, recovery of the Black Sea appears tenuous as the exploitation of environmental resources (agriculture, fishing and shipping) increases with continued economic development of post-Soviet countries. This results in the loss of wetlands through drainage and reclamation. Water transparency decreases as phytoplankton bloom and this deterioration in water quality leads to the degradation of coastal plant communities (Cystoseira, seagrass) and also Phyllophora habitat on the shelf. Decomposition of benthic plants results in hypoxia killing flora and fauna associated with these habitats. Ecological pressure from these factors along with constant levels of fishing activity results in target stocks remaining depleted. Of the four Alternative Scenarios, two show improvements on the Baseline ecosystem condition, with improved waste water treatment and reduced fishing pressure, while the other two show a worsening, due to increased natural resource exploitation leading to rapid reversal of any recent ecosystem recovery. From this we conclude that variations in economic policy have significant consequences for the health of the Black Sea, and ecosystem recovery is directly linked to social–economic choices.
Resumo:
The distribution patterns of many species in the intertidal zone are partly determined by their ability to survive and recover from tidal emersion. During emersion, most crustaceans experience gill collapse, impairing gas exchange. Such collapse generates a state of hypoxemia and a hypercapnia-induced respiratory acidosis, leading to hyperlactaemia and metabolic acidosis. However, how such physiological responses to emersion are modified by prior exposure to elevated CO2 and temperature combinations, indicative of future climate change scenarios, is not known. We therefore investigated key physiological responses of velvet swimming crabs, Necora puber, kept for 14 days at one of four pCO(2)/temperature treatments (400 mu atm/10 degrees C, 1000 mu atm/10 degrees C, 400 mu atm/15 degrees C or 1000 mu atm/15 degrees C) to experimental emersion and recovery. Pre-exposure to elevated pCO(2) and temperature increased pre-emersion bicarbonate ion concentrations [HCO3-], increasing resistance to short periods of emersion (90 min). However, there was still a significant acidosis following 180 min emersion in all treatments. The recovery of extracellular acid-base via the removal of extracellular pCO(2) and lactate after emersion was significantly retarded by exposure to both elevated temperature and pCO(2). If elevated environmental pCO(2) and temperature lead to slower recovery after emersion, then some predominantly subtidal species that also inhabit the low to mid shore, such as N. puber, may have a reduced physiological capacity to retain their presence in the low intertidal zone, ultimately affecting their bathymetric range of distribution, as well as the structure and diversity of intertidal assemblages.
Resumo:
High level environmental screening study for offshore wind farm developments – marine habitats and species This report provides an awareness of the environmental issues related to marine habitats and species for developers and regulators of offshore wind farms. The information is also relevant to other offshore renewable energy developments. The marine habitats and species considered are those associated with the seabed, seabirds, and sea mammals. The report concludes that the following key ecological issues should be considered in the environmental assessment of offshore wind farms developments: • likely changes in benthic communities within the affected area and resultant indirect impacts on fish, populations and their predators such as seabirds and sea mammals; • potential changes to the hydrography and wave climate over a wide area, and potential changes to coastal processes and the ecology of the region; • likely effects on spawning or nursery areas of commercially important fish and shellfish species; • likely effects on mating and social behaviour in sea mammals, including migration routes; • likely effects on feeding water birds, seal pupping sites and damage of sensitive or important intertidal sites where cables come onshore; • potential displacement of fish, seabird and sea mammals from preferred habitats; • potential effects on species and habitats of marine natural heritage importance; • potential cumulative effects on seabirds, due to displacement of flight paths, and any mortality from bird strike, especially in sensitive rare or scarce species; • possible effects of electromagnetic fields on feeding behaviour and migration, especially in sharks and rays, and • potential marine conservation and biodiversity benefits of offshore wind farm developments as artificial reefs and 'no-take' zones. The report provides an especially detailed assessment of likely sensitivity of seabed species and habitats in the proposed development areas. Although sensitive to some of the factors created by wind farm developments, they mainly have a high recovery potential. The way in which survey data can be linked to Marine Life Information Network (MarLIN) sensitivity assessments to produce maps of sensitivity to factors is demonstrated. Assessing change to marine habitats and species as a result of wind farm developments has to take account of the natural variability of marine habitats, which might be high especially in shallow sediment biotopes. There are several reasons for such changes but physical disturbance of habitats and short-term climatic variability are likely to be especially important. Wind farm structures themselves will attract marine species including those that are attached to the towers and scour protection, fish that associate with offshore structures, and sea birds (especially sea duck) that may find food and shelter there. Nature conservation designations especially relevant to areas where wind farm might be developed are described and the larger areas are mapped. There are few designated sites that extend offshore to where wind farms are likely to be developed. However, cable routes and landfalls may especially impinge on designated sites. The criteria that have been developed to assess the likely marine natural heritage importance of a location or of the habitats and species that occur there can be applied to survey information to assess whether or not there is anything of particular marine natural heritage importance in a development area. A decision tree is presented that can be used to apply ‘duty of care’ principles to any proposed development. The potential ‘gains’ for the local environment are explored. Wind farms will enhance the biodiversity of areas, could act as refugia for fish, and could be developed in a way that encourages enhancement of fish stocks including shellfish.
Resumo:
The effect of different factors (spawning biomass, environmental conditions) on recruitment is a subject of great importance in the management of fisheries, recovery plans and scenario exploration. In this study, recently proposed supervised classification techniques, tested by the machine-learning community, are applied to forecast the recruitment of seven fish species of North East Atlantic (anchovy, sardine, mackerel, horse mackerel, hake, blue whiting and albacore), using spawning, environmental and climatic data. In addition, the use of the probabilistic flexible naive Bayes classifier (FNBC) is proposed as modelling approach in order to reduce uncertainty for fisheries management purposes. Those improvements aim is to improve probability estimations of each possible outcome (low, medium and high recruitment) based in kernel density estimation, which is crucial for informed management decision making with high uncertainty. Finally, a comparison between goodness-of-fit and generalization power is provided, in order to assess the reliability of the final forecasting models. It is found that in most cases the proposed methodology provides useful information for management whereas the case of horse mackerel is an example of the limitations of the approach. The proposed improvements allow for a better probabilistic estimation of the different scenarios, i.e. to reduce the uncertainty in the provided forecasts.