3 resultados para soap operas

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hollow, black reticulate ‘microfossils’ of unknown affinity found in Ordovician to late Cretaceous sediments from North America, Europe and Australia were given the name Linotolypa by Eisenack in 1962. In 1978, he recognised that they were pseudo-microfossils consisting of asphalt, and noted that their structure resembled that of soap bubbles formed in agitated suspensions. These objects are well known as a component of the particles caught from the air by pollen and spore traps at the present day. They are correctly termed ‘cenospheres’ and are formed from coal and possibly pitch and fuel oil by incomplete combustion. If their presence were to be confirmed in Palaeozoic sediments, this would provide important new evidence for the occurrence of fire in the geological record and of the history of levels of O2 in the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

eScience is an umbrella concept which covers internet technologies, such as web service orchestration that involves manipulation and processing of high volumes of data, using simple and efficient methodologies. This concept is normally associated with bioinformatics, but nothing prevents the use of an identical approach for geoinfomatics and OGC (Open Geospatial Consortium) web services like WPS (Web Processing Service). In this paper we present an extended WPS implementation based on the PyWPS framework using an automatically generated WSDL (Web Service Description Language) XML document that replicates the WPS input/output document structure used during an Execute request to a server. Services are accessed using a modified SOAP (Simple Object Access Protocol) interface provided by PyWPS, that uses service and input/outputs identifiers as element names. The WSDL XML document is dynamically generated by applying XSLT (Extensible Stylesheet Language Transformation) to the getCapabilities XML document that is generated by PyWPS. The availability of the SOAP interface and WSDL description allows WPS instances to be accessible to workflow development software like Taverna, enabling users to build complex workflows using web services represented by interconnecting graphics. Taverna will transform the visual representation of the workflow into a SCUFL (Simple Conceptual Unified Flow Language) based XML document that can be run internally or sent to a Taverna orchestration server. SCUFL uses a dataflow-centric orchestration model as opposed to the more commonly used orchestration language BPEL (Business Process Execution Language) which is process-centric.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Air–sea dimethylsulfide (DMS) fluxes and bulk air–sea gradients were measured over the Southern Ocean in February–March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (> 15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m/s. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind-speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data show no obvious modification of the gas transfer–wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.