8 resultados para set
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing, and pH is decreasing. These unparalleled changes present new challenges for managing our seas as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve Good Environmental Status (GES) in their seas by 2020; this means management toward GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring program which has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European seas. Thus the continuation of long-term ecological time-series such as the CPR is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.
Resumo:
The phytoplankton colour index (PCI) of the Continuous Plankton Recorder (CPR) survey is an in situ measure of ocean colour, which is considered a proxy of the phytoplankton biomass. PCI has been extensively used to describe the major spatiotemporal patterns of phytoplankton in the North Atlantic Ocean and North Sea since 1931. Regardless of its wide application, the lack of an adequate evaluation to test the PCI's quantitative nature is an important limitation. To address this concern, a field trial over the main production season has been undertaken to assess the numerical values assigned by previous investigations for each category of the greenness of the PCI. CPRs were towed across the English Channel from Roscoff to Plymouth consecutively for each of 8 months producing 76 standard CPR samples, each representing 10 nautical miles of tow. The results of this experiment test and update the PCI methodology, and confirm the validity of this long-term in situ ocean colour data set. In addition, using a 60-year time series of the PCI of the western English Channel, a comparison is made between the previous and the current revised experimental calculations of PCI.