2 resultados para sediment deposition
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Sediment contaminants were monitored in Milford Haven Waterway (MHW) since 1978 (hydrocarbons) and 1982 (metals), with the aim of providing surveillance of environmental quality in one of the UK’s busiest oil and gas ports. This aim is particularly important during and after large-scale investment in liquefied natural gas (LNG) facilities. However, methods inevitably have changed over the years, compounding the difficulties of coordinating sampling and analytical programmes. After a review by the MHW Environmental Surveillance Group (MHWESG), sediment hydrocarbon chemistry was investigated in detail in 2010. Natural Resources Wales (NRW) contributed their MHW data for 2007 and 2012, collected to assess the condition of the Special Area of Conservation (SAC) designated under the European Union Habitats Directive. Datasets during 2007-2012 have thus been more comparable. The results showed conclusively that a MHW-wide peak in concentrations of sediment polycyclic aromatic hydrocarbons (PAHs), metals and other contaminants occurred in late 2007. This was corroborated by independent annual monitoring at one centrally-located station with peaks in early 2008 and 2011. The spatial and temporal patterns of recovery from the 2007 peak, shown by MHW-wide surveys in 2010 and 2012, indicate several probable causes of contaminant trends, as follows: atmospheric deposition, catchment runoff, sediment resuspension from dredging, and construction of two LNG terminals and a power station. Adverse biological effects predictable in 2007 using international sediment quality guidelines, were independently tested by data from monitoring schemes of more than a decade duration in MHW (starfish, limpets), and in the wider SAC (grey seals). Although not proving cause and effect, many of these potential biological receptors showed a simultaneous negative response to the elevated 2007 contamination following intense dredging activity in 2006. Wetland bird counts were typically at a peak in the winter of 2005-2006 previous to peak dredging. In the following winter 2006-2007, shelduck in Pembroke River showed their lowest winter count, and spring 2007 was the largest ever drop in numbers of broods across MHW between successive breeding seasons. Wigeon counts in Pembroke River were again low in late 2012 after further dredging nearby. These results are strongly supported by PAH data reported previously from invertebrate bioaccumulation studies in MHW 2007-2010, themselves closely reflecting sediment
Resumo:
The impact of the seasonal deposition of phytoplankton and phytodetritus on surface sediment bacterial abundance and community composition was investigated at the Western English Channel site L4. Sediment and water samples were collected from January to September in 2012, increasing in frequency during periods of high water column phytoplankton abundance. Compared to the past two decades, the spring bloom in 2012 was both unusually long in duration and contained higher than average biomass. Within spring months, the phytoplankton bloom was well mixed through the water column and showed accumulations near the sea bed, as evidenced by flow cytometry measurements of nanoeukaryotes, water column chlorophyll a and the appearance of pelagic phytoplankton at the sediment. Measurements of chlorophyll and chlorophyll degradation products indicated phytoplankton material was heavily degraded after it reached the sediment surface: the nature of the chlorophyll degradation products (predominantly pheophorbide, pyropheophorbide and hydroxychlorophyllone) was indicative of grazing activity. The abundance of bacterial 16S rRNA genes g−1 sediment (used as a proxy for bacterial biomass) increased markedly with the onset of the phytoplankton bloom, and correlated with measurements of chlorophyll at the surface sediment. Together, this suggests that bacteria may have responded to nutrients released via grazing activity. In depth sequencing of the 16S rRNA genes indicated that the composition of the bacterial community shifted rapidly through-out the prolonged spring bloom period. This was primarily due to an increase in the relative sequence abundance of Flavobacteria.