2 resultados para runaway
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Overfishing of large-bodied benthic fishes and their subsequent population collapses on the Scotian Shelf of Canada’s east coast1, 2 and elsewhere3, 4 resulted in restructuring of entire food webs now dominated by planktivorous, forage fish species and macroinvertebrates. Despite the imposition of strict management measures in force since the early 1990s, the Scotian Shelf ecosystem has not reverted back to its former structure. Here we provide evidence of the transient nature of this ecosystem and its current return path towards benthic fish species domination. The prolonged duration of the altered food web, and its current recovery, was and is being governed by the oscillatory, runaway consumption dynamics of the forage fish complex. These erupting forage species, which reached biomass levels 900% greater than those prevalent during the pre-collapse years of large benthic predators, are now in decline, having outstripped their zooplankton food supply. This dampening, and the associated reduction in the intensity of predation, was accompanied by lagged increases in species abundances at both lower and higher trophic levels, first witnessed in zooplankton and then in large-bodied predators, all consistent with a return towards the earlier ecosystem structure. We conclude that the reversibility of perturbed ecosystems can occur and that this bodes well for other collapsed fisheries.
Resumo:
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.