2 resultados para rho-percolation
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The structure of intertidal benthic diatoms assemblages in the Tagus estuary was investigated during a 2-year survey, carried out in six stations with different sediment texture. Nonparametric multivariate analyses were used to characterize spatial and temporal patterns of the assemblages and to link them to the measured environmental variables. In addition, diversity and other features related to community physiognomy, such as size-class or life-form distributions, were used to describe the diatom assemblages. A total of 183 diatom taxa were identified during cell counts and their biovolume was determined. Differences between stations (analysis of similarity (ANOSIM), R=0.932) were more evident than temporal patterns (R=0.308) and mud content alone was the environmental variable most correlated to the biotic data (BEST, rho=0.863). Mudflat stations were typically colonized by low diversity diatom assemblages (H' similar to 1.9), mainly composed of medium-sized motile epipelic species (250-1,000 mu m(3)), that showed species-specific seasonal blooms (e.g., Navicula gregaria Donkin). Sandy stations had more complex and diverse diatom assemblages (H' similar to 3.2). They were mostly composed by a large set of minute epipsammic species (<250 mu m(3)) that, generally, did not show temporal patterns. The structure of intertidal diatom assemblages was largely defined by the interplay between epipelon and epipsammon, and its diversity was explained within the framework of the Intermediate Disturbance Hypothesis. However, the spatial distribution of epipelic and epipsammic life-forms showed that the definition of both functional groups should not be over-simplified.
Resumo:
An extensive literature base worldwide demonstrates how spatial differences in estuarine fish assemblages are related to those in the environment at (bio)regional, estuary-wide or local (within-estuary) scales. Few studies, however, have examined all three scales, and those including more than one have often focused at the level of individual environmental variables rather than scales as a whole. This study has identified those spatial scales of environmental differences, across regional, estuary-wide and local levels, that are most important in structuring ichthyofaunal composition throughout south-western Australian estuaries. It is the first to adopt this approach for temperate microtidal waters. To achieve this, we have employed a novel approach to the BIOENV routine in PRIMER v6 and a modified global BEST test in an alpha version of PRIMER v7. A combination of all three scales best matched the pattern of ichthyofaunal differences across the study area (rho = 0.59; P = 0.001), with estuary-wide and regional scales accounting for about twice the variability of local scales. A shade plot analysis showed these broader-scale ichthyofaunal differences were driven by a greater diversity of marine and estuarine species in the permanently-open west coast estuaries and higher numbers of several small estuarine species in the periodically-open south coast estuaries. When interaction effects were explored, strong but contrasting influences of local environmental scales were revealed within each region and estuary type. A quantitative decision tree for predicting the fish fauna at any nearshore estuarine site in south-western Australia has also been produced. The estuarine management implications of the above findings are highlighted.