7 resultados para reanalysis

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the first decadal reanalysis simulation of the biogeochemistry of the North West European shelf, along with a full evaluation of its skill and value. An error-characterized satellite product for chlorophyll was assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The results showed that the reanalysis improved the model predictions of assimilated chlorophyll in 60% of the study region. Model validation metrics showed that the reanalysis had skill in matching a large dataset of in situ observations for ten ecosystem variables. Spearman rank correlations were significant and higher than 0.7 for physical-chemical variables (temperature, salinity, oxygen), ∼0.6 for chlorophyll and nutrients (phosphate, nitrate, silicate), and significant, though lower in value, for partial pressure of dissolved carbon dioxide (∼0.4). The reanalysis captured the magnitude of pH and ammonia observations, but not their variability. The value of the reanalysis for assessing environmental status and variability has been exemplified in two case studies. The first shows that between 340,000-380,000 km2 of shelf bottom waters were oxygen deficient potentially threatening bottom fishes and benthos. The second application confirmed that the shelf is a net sink of atmospheric carbon dioxide, but the total amount of uptake varies between 36-46 Tg C yr−1 at a 90% confidence level. These results indicate that the reanalysis output dataset can inform the management of the North West European shelf ecosystem, in relation to eutrophication, fishery, and variability of the carbon cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we clearly demonstrate that changes in oceanic nutrients are a first order factor in determining changes in the primary production of the northwest European continental shelf on time scales of 5–10 yr. We present a series of coupled hydrodynamic ecosystem modelling simulations, using the POLCOMS-ERSEM system. These are forced by both reanalysis data and a single example of a coupled ocean-atmosphere general circulation model (OA-GCM) representative of possible conditions in 2080–2100 under an SRES A1B emissions scenario, along with the corresponding present day control. The OA-GCM forced simulations show a substantial reduction in surface nutrients in the open-ocean regions of the model domain, comparing future and present day time-slices. This arises from a large increase in oceanic stratification. Tracer transport experiments identify a substantial fraction of on-shelf water originates from the open-ocean region to the south of the domain, where this increase is largest, and indeed the on-shelf nutrient and primary production are reduced as this water is transported on-shelf. This relationship is confirmed quantitatively by comparing changes in winter nitrate with total annual nitrate uptake. The reduction in primary production by the reduced nutrient transport is mitigated by on-shelf processes relating to temperature, stratification (length of growing season) and recycling. Regions less exposed to ocean-shelf exchange in this model (Celtic Sea, Irish Sea, English Channel, and Southern North Sea) show a modest increase in primary production (of 5–10%) compared with a decrease of 0–20% in the outer shelf, Central and Northern North Sea. These findings are backed up by a boundary condition perturbation experiment and a simple mixing model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following the publication of our paper (Attrill et al. 2007), we became quickly aware of a couple of errors. We have subsequently been collaborating with Dr. Chris Lynam (Lynam et al. 2004, 2005) to bring together our two datasets, explore the common patterns within our data, and attempt to provide a consensus on how climate is affecting gelatinous plankton in the North Sea. During this reanalysis, two errors within the data were discovered, one involving a transcription error of a column of residuals during de-trended analysis, the other a major data entry error deep in the Continuous Plankton Recorder (CPR) database for sector B2. Here we present a revised version of table 1 from Attrill et al. (2007) to incorporate corrections to these transcription and data entry errors. These corrections alter some of the results in our original data table, mainly to increase and strengthen the number of significant relations we found (e.g., for sector B2 and whole sea area); all previous main results remain robustly significant. Following discussions with Dr. Lynam, two clarifications of statements made in Attrill et al. (2007) are also required. Page 482, Results, last line of first column: ‘‘There were no...robust, consistent relations between jellyfish frequency and any environmental variables for B and D… contrary to the findings of previous shorter time series (Lynam et al. 2005).’’ The Lynam et al. (2004, 2005) papers presented no data for the D sector and found no link in the B sector, contrary to our revised results. Page 482, Discussion, paragraph 1, last sentence: ‘‘… positive association … North of Scotland (Lynam et al. 2005) … does not appear to be maintained.’’ Our paper did not report on any data that covered Lynam et al.’s (2005) North of Scotland area so the statement is not directly supported, although their positive relation North of Scotland, when considered in conjunction with inflow, may agree with the C2 and B2 results of Attrill et al. (2007).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between climate, represented by the North Atlantic Oscillation (NAO), and the calanoid copepod Calanus finmarchicus has been extensively studied. The correlation between NAO and C. finmarchicus has broken down (post-1995). In the present study, we revisit the relationship between C. finmarchicus and the NAO. Our reanalysis shows that previous treatment of this data did not take into account 2 aspects of both the C. finmarchicus and NAO index time-series: (1) the presence of significant trends and (2) significant autocorrelation. Our analysis suggests that previously reported relationships between NAO and C. finmarchicus abundance can be explained largely by the trends in both data series. Removing the trend from both time-series resulted in a decrease in the amount of C. finmarchicus abundance variability explained by the NAO. Trend removal eliminated the autocorrelation from the NAO time-series, but not from the C. finmarchicus time-series. Partial autocorrelation analysis showed that the autocorrelation present in the C. finmarchicus time-series is only found at a lag of 1 yr, suggesting strong, year-to-year connectivity in this population. We included the lagged C. finmarchicus abundance into a regression with the NAO and found that C. finmarchicus variability is explained by the previous year’s abundance and, to a much smaller extent, by NAO variability. Limiting the time-series to the most recent 22 yr period (1981 to 2002) showed that the NAO is no longer correlated to C. finmarchicus abundance, and the autocorrelation in the C. finmarchicus abundance series also appears to be weakening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is an open question how animals find food in dynamic natural environments where they possess little or no knowledge of where resources are located. Foraging theory predicts that in environments with sparsely distributed target resources, where forager knowledge about resources’ locations is incomplete, Lévy flight movements optimize the success of random searches. However, the putative success of Lévy foraging has been demonstrated only in model simulations. Here, we use high-temporal-resolution Global Positioning System (GPS) tracking of wandering (Diomedea exulans) and black-browed albatrosses (Thalassarche melanophrys) with simultaneous recording of prey captures, to show that both species exhibit Lévy and Brownian movement patterns. We find that total prey masses captured by wandering albatrosses during Lévy movements exceed daily energy requirements by nearly fourfold, and approached yields by Brownian movements in other habitats. These results, together with our reanalysis of previously published albatross data, overturn the notion that albatrosses do not exhibit Lévy patterns during foraging, and demonstrate that Lévy flights of predators in dynamic natural environments present a beneficial alternative strategy to simple, spatially intensive behaviors. Our findings add support to the possibility that biological Lévy flight may have naturally evolved as a search strategy in response to sparse resources and scant information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.