15 resultados para reaching

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in the ecosystem of the North Sea may occur as pronounced inter-annual and step-wise shifts as well as gradual trends. Marked inter-annual shifts have occurred at least twice in the last two decades, the late 1980s and the late 1990s, that appear to reflect an increased inflow of oceanic water and species. Numerical modelling has demonstrated a link between altered rates of inflow of oceanic water into the northern North Sea and a regime shift after 1988. In 1989 and 1997 oceanic species not normally found in the North Sea were observed there, suggesting pulses of oceanic water had entered the basin and triggered the subsequent ecosystem change. The oceanic water has origins mainly west of Britain in the Rockall Trough, where the long-term mean volume transport is around 3.7Sv northwards (1Sv=10 super(6)m super(3)s super(1)), but in early 1989 and early 1998 was observed to be more than twice the mean value, reaching over 7Sv. These periods of high transport coinciding with the inferred pulses of oceanic water into the North Sea suggest a connection through the continental shelf edge current. Copyright 2001 International Council for the Exploration of the Sea

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical distribution, seasonal and ontogenetic migrations and seasonal variability in abundance of Thysanoessa longicaudata (Krøyer) were investigated using the Longhurst-Hardy Plankton Recorder for a 4 yr period (March, 1971 to May, 1975) at Ocean Weather Station “I” (59°00′N; 19°00′W) in the north-eastern Atlantic Ocean. Of 8 species of euphausiids identified at this position, the vast majority were T. longicaudata (for example, 99.5% of the total euphausiids in 1972 belonged to this species). From March to October the majority of calyptopes, furciliae and adults of T. longicaudata were found in the upper 100 m. The major spawning occurred in spring at a water temperature of 9° to 10°C and calyptopes and furciliae appeared in late April, reaching their maximum abundance in May. There was no evidence of large-scale diurnal migrations, although an extensive ontogenetic migration of young developmental stages was observed. The eggs were found from 100 m down to 800 m, the maximum depth of sampling, and the vertical distribution of the three naupliar stages showed a “developmental ascent” as they matured. During the main reproductive period in May, over 70% of all nauplii were below 500 m while more than 94% of Calyptopis Stage I were above 500 m with their maximum abundance in the euphotic zone (0 to 50 m). Calyptopis Stage I is the first feeding stage and it is this stage which shows the largest ontogenetic migration. Brief descriptions of the egg and nauplii are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calanus helgolandicus over-winters in the shallow waters (100 m) of the Celtic Sea as copepodite stages V and VI; the minimum temperature in winter is approximately 8.0°C. This over-wintering is not a true hibernation or dormacy, accompanied by a reduced metabolic state with a discontinuation of feeding and development, but more of a lowered activity, involving reduced feeding and development, with predation on available microzooplankton and detritus. Analysis of specimens from the winter population showed that copepodite stages V and VI were actively feeding and still producing and possibly liberating eggs. The absence of late nauplii and young copepodites in the water column until late March indicated that there must be a high mortality of these winter cohorts. The copepodites of the first generation appeared in April–May, the younger stages, copepodites I to III, being distributed deeper in the water column below the euphotic zone and thermocline. This distribution would contribute to amuch slower rate of development. By August the ontogenetic vertical distributions observed in the copepodites were reversed, the younger stages occuring in the warmer surface layers within the euphotic zone. Diurnal migrations were observed in the later copepodites only, the younger stages I to III either remaining deep in spring or shallow in summer. The causal mechanisms which alter the behaviour of the young copepodites remain unexplained. The development of the population of Calanus helgolandicus in 1978, reaching its peak of abundance in August, was typical for the shelf seas around U.K. as observed from Continuous Plankton Recorder data, 1958 to 1977.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of experiments recorded by Bayne & Scullard (1977) confirmed earlier studies (Bayne, 1973) in describing a decline in the rate of oxygen uptake (Vo2) by Mytilus edulis during starvation, eventually reaching a steady-state value, called the standard rate of oxygen consumption. Earlier experiments had also shown that if such starved mussels were fed, oxygen uptake increased rapidly to a high level called the active rate of oxygen consumption (Thompson & Bayne, 1972; Bayne, Thompson & Widdows, 1973). Some of this increase in metabolic rate is undoubtedly due to an increased filtration rate that is stimulated by the presence of food (the ‘mechanical cost of feeding’ discussed by Bayne et al. 1976), and part is due to the ‘physiological costs of feeding’, which includes energy utilized in digestion and assimilation of the food, and energy that is lost during deamination and other catabolic processes that accompany digestion (Warren & Davis, 1967). Increases in metabolic rate associated with feeding have been called the specific dynamic action (SDA) of the ration (see Harper, 1971, for a discussion) or the apparent SDA (Beamish, 1974)5 and they have been related to aspects of protein metabolism (Krebs, 1964). This paper describes the results of some experiments designed to examine the relationships between SDA and ammonia excretion in Mytilus edulis L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of experiments recorded by Bayne & Scullard (1977) confirmed earlier studies (Bayne, 1973) in describing a decline in the rate of oxygen uptake (Vo2) by Mytilus edulis during starvation, eventually reaching a steady-state value, called the standard rate of oxygen consumption. Earlier experiments had also shown that if such starved mussels were fed, oxygen uptake increased rapidly to a high level called the active rate of oxygen consumption (Thompson & Bayne, 1972; Bayne, Thompson & Widdows, 1973). Some of this increase in metabolic rate is undoubtedly due to an increased filtration rate that is stimulated by the presence of food (the ‘mechanical cost of feeding’ discussed by Bayne et al. 1976), and part is due to the ‘physiological costs of feeding’, which includes energy utilized in digestion and assimilation of the food, and energy that is lost during deamination and other catabolic processes that accompany digestion (Warren & Davis, 1967). Increases in metabolic rate associated with feeding have been called the specific dynamic action (SDA) of the ration (see Harper, 1971, for a discussion) or the apparent SDA (Beamish, 1974)5 and they have been related to aspects of protein metabolism (Krebs, 1964). This paper describes the results of some experiments designed to examine the relationships between SDA and ammonia excretion in Mytilus edulis L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the mechanisms that structure communities and influence biodiversity are fundamental goals of ecology. To test the hypothesis that the abundance and diversity of upper-trophic level predators (seabirds) is related to the underlying abundance and diversity of their prey (zooplankton) and ecosystem-wide energy availability (primary production), we initiated a monitoring program in 2002 that jointly and repeatedly surveys seabird and zooplankton populations across a 7,500 km British Columbia-Bering Sea-Japan transect. Seabird distributions were recorded by a single observer (MH) using a strip-width technique, mesozooplankton samples were collected with a Continuous Plankton Recorder, and primary production levels were derived using the appropriate satellite parameters and the Vertically Generalized Production Model (Behrenfeld and Falkowski 1997). Each trophic level showed clear spatio-temporal patterns over the course of the study. The strongest relationship between seabird abundance and diversity and the lower trophic levels was observed in March/April ('spring') and significant relationships were also found through June/July ('summer'). No discernable relationships were observed during the September/October ('fall') months. Overall, mesozooplankton abundance and biomass explained the dominant portion of seabird abundance and diversity indices (richness, Simpson's Index, and evenness), while primary production was only related to seabird richness. These findings underscore the notion that perturbations of ocean productivity and lower trophic level ecosystem constituents influenced by climate change, such as shifts in timing (phenology) and synchronicity (match-mismatch), could impart far-reaching consequences throughout the marine food web.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single tidal cycle survey in a Lagrangian reference frame was conducted in autumn 2010 to evaluate the impact of short-term, episodic and enhanced turbulent mixing on large chain-forming phytoplankton. Observations of turbulence using a free-falling microstructure profiler were undertaken, along with near-simultaneous profiles with an in-line digital holographic camera at station L4 (50° 15′ N 4° 13′ W, depth 50 m) in the Western English Channel. Profiles from each instrument were collected hourly whilst following a drogued drifter. Results from an ADCP attached to the drifter showed pronounced vertical shear, indicating that the water column structure consisted of two layers, restricting interpretation of the Lagrangian experiment to the upper ~ 25 m. Atmospheric conditions deteriorated during the mid-point of the survey, resulting in values of turbulent dissipation reaching a maximum of 10− 4 W kg− 1 toward the surface in the upper 10 m. Chain-forming phytoplankton > 200 μm were counted using the data from the holographic camera for the two periods, before and after the enhanced mixing event. As mixing increased phytoplankton underwent chain breakage, were dispersed by advection through their removal from the upper to lower layer and subjected to aggregation with other suspended material. Depth averaged counts of phytoplankton were reduced from a maximum of around 2050 L− 1 before the increased turbulence, to 1070 L− 1 after, with each of these mechanisms contributing to this reduction. These results demonstrate the sensitivity of phytoplantkon populations to moderate increases in turbulent activity, yielding consequences for accurate forecasting of the role played by phytoplankton in climate studies and also for the ecosystem in general in their role as primary producers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three dimensional hydrodynamic model with a coupled carbonate speciation sub-model is used to simulate large additions of CO2into the North Sea, representing leakages at potential carbon sequestration sites. A range of leakage scenarios are conducted at two distinct release sites, allowing an analysis of the seasonal, inter-annual and spatial variability of impacts to the marine ecosystem. Seasonally stratified regions are shown to be more vulnerable to CO2release during the summer as the added CO2remains trapped beneath the thermocline, preventing outgasing to the atmosphere. On average, CO2 injected into the northern North Sea is shown to reside within the water column twice as long as an equivalent addition in the southern North Sea before reaching the atmosphere. Short-term leakages of 5000 tonnes CO2over a single day result in substantial acidification at the release sites (up to -1.92 pH units), with significant perturbations (greater than 0.1 pH units) generally confined to a 10 km radius. Long-term CO2leakages sustained for a year may result in extensive plumes of acidified seawater, carried by major advective pathways. Whilst such scenarios could be harmful to marine biota over confined spatial scales, continued unmitigated CO2emissions from fossil fuels are predicted to result in greater and more long-lived perturbations to the carbonate system over the next few decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Increasing concentrations of atmospheric greenhouse gases (GHG) and its impact on the climate has resulted in many international governments committing to reduce their GHG emissions. The UK, for example, has committed to reducing its carbon emissions by 80% by 2050. Suggested ways of reaching such a target are to increase dependency on offshore wind, offshore gas and nuclear. It is not clear, however, how the construction, operation and decommissioning of these energy systems will impact marine ecosystem services, i.e. the services obtained by people from the natural environment such as food provisioning, climate regulation and cultural inspiration. Research on ecosystem service impacts associated with offshore energy technologies is still in its infancy. The objective of this review is to bolster the evidence base by firstly, recording and describing the impacts of energy technologies at the marine ecosystems and human level in a consistent and transparent way; secondly, to translate these ecosystem and human impacts into ecosystem service impacts by using a framework to ensure consistency and comparability. The output of this process will be an objective synthesis of ecosystem service impacts comprehensive enough to cover different types of energy under the same analysis and to assist in informing how the provision of ecosystem services will change under different energy provisioning scenarios. Methods: Relevant studies will be sourced using publication databases and selected using a set of selection criteria including the identification of: (i) relevant subject populations such as marine and coastal species, marine habitat types and the general public; (ii) relevant exposure types including offshore wind farms, offshore oil and gas platforms and offshore structures connected with nuclear; (iii) relevant outcomes including changes in species structure and diversity; changes in benthic, demersal and pelagic habitats; and changes in cultural services. The impacts will be synthesised and described using a systematic map. To translate these findings into ecosystem service impacts, the Common International Classification of Ecosystem Services (CICES) and Millennium Ecosystem Assessment (MEA) frameworks are used and a detailed description of the steps taken provided to ensure transparency and replicability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic climate change is exerting pressures on coastal ecosystems through increases in temperature, precipitation and ocean acidification. Phytoplankton community structure and photo-physiology are therefore adapting to these conditions. Changes in phytoplankton biomass and photosynthesis in relation to temperature and nutrient concentrations were assessed using a 14 year dataset from a coastal station in the Western English Channel (WEC). Dinoflagellate and coccolithophorid biomass exhibited a positive correlation with temperature, reaching the highest biomass at between 15 and 17°C. Diatoms showed a negative correlation with temperature, with highest biomass at 10°C. Chlorophyll a (chl a) normalised light-saturated photosynthetic rates (PBm) exhibited a hyperbolic response to increasing temperature, with an initial linear increase from 8 to 11°C, and reaching a plateau from 12°C. There was however no significant positive correlation between nutrients and phytoplankton biomass or PBm, which reflects the lag time between nutrient input and phytoplankton growth at this coastal site. The major phytoplankton groups that occurred at this site occupied distinct thermal niches, which in turn modified PBm. Increasing temperature, and higher water column stratification, was major factors in the initiation of dinoflagellates blooms at this site. Dinoflagellates blooms during summer also co-varied with silicate concentration, and acted as a tracer of dissolved inorganic nitrogen and phosphate from river run-off, which were subsequently reduced during these blooms. The data implies that increasing temperature and high river runoff during summer, will promote dinoflaglellates blooms in the WEC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders. Short‐term IFSF could result from animals using a win–stay, lose–shift foraging strategy. Alternatively, it may be a consequence of individual specialization. Pelagic seabirds are colonial central‐place foragers, classically assumed to use flexible foraging strategies to target widely dispersed, spatiotemporally patchy prey. However, tracking has shown that IFSF occurs in many seabirds, although it is not known whether this persists across years. To test for long‐term IFSF and to examine alternative hypotheses concerning its cause, we repeatedly tracked 55 Northern Gannets (Morus bassanus) from a large colony in the North Sea within and across three successive breeding seasons. Gannets foraged in neritic waters, predictably structured by tidal mixing and thermal stratification, but subject to stochastic, wind‐induced overturning. Both within and across years, coarse to mesoscale (tens of kilometers) IFSF was significant but not absolute, and foraging birds departed the colony in individually consistent directions. Carbon stable isotope ratios in gannet blood tissues were repeatable within years and nitrogen ratios were also repeatable across years, suggesting long‐term individual dietary specialization. Individuals were also consistent across years in habitat use with respect to relative sea surface temperature and in some dive metrics, yet none of these factors accounted for IFSF. Moreover, at the scale of weeks, IFSF did not decay over time and the magnitude of IFSF across years was similar to that within years, suggesting that IFSF is not primarily the result of win–stay, lose–shift foraging. Rather, we hypothesize that site familiarity, accrued early in life, causes IFSF by canalizing subsequent foraging decisions. Evidence from this and other studies suggests that IFSF may be common in colonial central‐place foragers, with far‐reaching consequences for our attempts to understand and conserve these animals in a rapidly changing environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naturally occurring red tides and harmful algal blooms (HABs) are of increasing importance in the coastal environment and can have dramatic effects on coastal benthic and epipelagic communities worldwide. Such blooms are often unpredictable, irregular or of short duration, and thus determining the underlying driving factors is problematic. The dinoflagellate Karenia mikimotoi is an HAB, commonly found in the western English Channel and thought to be responsible for occasional mass finfish and benthic mortalities. We analysed a 19-year coastal time series of phytoplankton biomass to examine the seasonality and interannual variability of K. mikimotoi in the western English Channel and determine both the primary environmental drivers of these blooms as well as the effects on phytoplankton productivity and oxygen conditions. We observed high variability in timing and magnitude of K. mikimotoi blooms, with abundances reaching >1000 cells mL�1 at 10 m depth, inducing up to a 12-fold increase in the phytoplankton carbon content of the water column. No long-term trends in the timing or magnitude of K. mikimotoi abundance were evident from the data. Key driving factors were identified as persistent summertime rainfall and the resultant input of low-salinity high-nutrient river water. The largest bloom in 2009 was associated with highest annual primary production and led to considerable oxygen depletion at depth, most likely as a result of enhanced biological breakdown of bloom material; however, this oxygen depletion may not affect zooplankton. Our data suggests that K. mikimotoi blooms are not only a key and consistent feature of western English Channel productivity, but importantly can potentially be predicted from knowledge of rainfall or river discharge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information on non-native species (NNS) is often scattered among a multitude of sources, such as regional and national databases, peer-reviewed and grey literature, unpublished research projects, institutional datasets and with taxonomic experts. Here we report on the development of a database designed for the collation of information in Britain. The project involved working with volunteer experts to populate a database of NNS (hereafter called “the species register”). Each species occupies a row within the database with information on aspects of the species’ biology such as environment (marine, freshwater, terrestrial etc.), functional type (predator, parasite etc.), habitats occupied in the invaded range (using EUNIS classification), invasion pathways, establishment status in Britain and impacts. The information is delivered through the Great Britain Non-Native Species Information Portal hosted by the Non-Native Species Secretariat. By the end of 2011 there were 1958 established NNS in Britain. There has been a dramatic increase over time in the rate of NNS arriving in Britain and those becoming established. The majority of established NNS are higher plants (1,376 species). Insects are the next most numerous group (344 species) followed by non-insect invertebrates (158 species), vertebrates (50 species), algae (24 species) and lower plants (6 species). Inventories of NNS are seen as an essential tool in the management of biological invasions. The use of such lists is diverse and far-reaching. However, the increasing number of new arrivals highlights both the dynamic nature of invasions and the importance of updating NNS inventories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the long-term and seasonal patterns of abundance and phenology of the cyclopoid copepod Oithona similis at the L4 site (1988–2013) in the North Atlantic and at the LTER-MC site (1984–2013) in the Mediterranean Sea to investigate whether high temperature limits the occurrence of this species with latitudinal cline. The two sites are well suited to testing this hypothesis as they are characterized by similar chlorophyll a concentration (Chl a) but different temperature [sea surface temperature (SST)]. The abundance of O. similis at L4 was ∼10 times higher than at LTER-MC. Moreover, this species had several peaks of abundance during the year at L4 but a single peak in spring at LTER-MC. The main mode of temporal variability in abundance was seasonal at both sites. The abundance of O. similis was negatively correlated with SST only at LTER-MC, whereas it was positively correlated with Chl a at both sites. Oithona similis had a temperature optimum between 15 and 20°C reaching maximum abundance at ∼16.5°C at LTER-MC, but showed no Chl a optimum at either site. We conclude that the abundance of O. similis increases with prey availability up to 16.5°C and that temperature >20°C represents the main limiting factor for population persistence.