2 resultados para quantization artifacts
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Satellite-based remote sensing of active fires is the only practical way to consistently and continuously monitor diurnal fluctuations in biomass burning from regional, to continental, to global scales. Failure to understand, quantify, and communicate the performance of an active fire detection algorithm, however, can lead to improper interpretations of the spatiotemporal distribution of biomass burning, and flawed estimates of fuel consumption and trace gas and aerosol emissions. This work evaluates the performance of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Thermal Anomaly (FTA) detection algorithm using seven months of active fire pixels detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) across the Central African Republic (CAR). Results indicate that the omission rate of the SEVIRI FTA detection algorithm relative to MODIS varies spatially across the CAR, ranging from 25% in the south to 74% in the east. In the absence of confounding artifacts such as sunglint, uncertainties in the background thermal characterization, and cloud cover, the regional variation in SEVIRI's omission rate can be attributed to a coupling between SEVIRI's low spatial resolution detection bias (i.e., the inability to detect fires below a certain size and intensity) and a strong geographic gradient in active fire characteristics across the CAR. SEVIRI's commission rate relative to MODIS increases from 9% when evaluated near MODIS nadir to 53% near the MODIS scene edges, indicating that SEVIRI errors of commission at the MODIS scene edges may not be false alarms but rather true fires that MODIS failed to detect as a result of larger pixel sizes at extreme MODIS scan angles. Results from this work are expected to facilitate (i) future improvements to the SEVIRI FTA detection algorithm; (ii) the assimilation of the SEVIRI and MODIS active fire products; and (iii) the potential inclusion of SEVIRI into a network of geostationary sensors designed to achieve global diurnal active fire monitoring.
Resumo:
The AltiKa altimeter records the reflection of Ka-band radar pulses from the Earth’s surface, with the commonly used waveform product involving the summation of 96 returns to provide average echoes at 40 Hz. Occasionally there are one-second recordings of the complex individual echoes (IEs), which facilitate the evaluation of on-board processing and offer the potential for new processing strategies. Our investigation of these IEs over the ocean confirms the on-board operations, whilst noting that data quantization limits the accuracy in the thermal noise region. By constructing average waveforms from 32 IEs at a time, and applying an innovative subwaveform retracker, we demonstrate that accurate height and wave height information can be retrieved from very short sections of data. Early exploration of the complex echoes reveals structure in the phase information similar to that noted for Envisat’s IEs.