4 resultados para protists

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites are not typically considered to be important components of polar marine ecosystems. It was therefore surprising when 18S rDNA surveys of protists in the West Antarctic Peninsula in winter revealed high abundances of parasite sequences. Parasite sequences made up, on average, over half (52%) of sequence reads in samples from deep water in winter. Winter surface water and sediment samples contained relatively fewer, but still strikingly high, parasite sequence reads (13 and 9%, respectively), while surface water samples in summer contained fewer parasite sequences (1.8%). A total of 1028 distinct parasite Operational Taxonomic Units were observed in winter, with the largest abundances and diversities within Syndiniales groups I and II, including Amoebophrya. Less abundant parasite sequence groups included Apicomplexa, Blastodinium, Chytriodinium, Cryptocaryon, Paradinium, Perkinsidae, Pirsonia and Ichthyophonae. Parasite sequence distributions suggested interactions with known hosts, such as diatom parasites which were mainly in the sediments, where resting spores of Chaetoceros spp. diatoms were abundant. Syndiniales sequences were correlated with radiolarian sequences, suggesting parasite–host interactions. The abundant proportions of parasite sequences indicate a potentially important role for parasites in the Antarctic marine ecosystem, with implications for plankton population dynamics, the role of the microbial loop, carbon flows and ecosystem responses to ongoing anthropogenic climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites are not typically considered to be important components of polar marine ecosystems. It was therefore surprising when 18S rDNA surveys of protists in the West Antarctic Peninsula in winter revealed high abundances of parasite sequences. Parasite sequences made up, on average, over half (52%) of sequence reads in samples from deep water in winter. Winter surface water and sediment samples contained relatively fewer, but still strikingly high, parasite sequence reads (13 and 9%, respectively), while surface water samples in summer contained fewer parasite sequences (1.8%). A total of 1028 distinct parasite Operational Taxonomic Units were observed in winter, with the largest abundances and diversities within Syndiniales groups I and II, including Amoebophrya. Less abundant parasite sequence groups included Apicomplexa, Blastodinium, Chytriodinium, Cryptocaryon, Paradinium, Perkinsidae, Pirsonia and Ichthyophonae. Parasite sequence distributions suggested interactions with known hosts, such as diatom parasites which were mainly in the sediments, where resting spores of Chaetoceros spp. diatoms were abundant. Syndiniales sequences were correlated with radiolarian sequences, suggesting parasite–host interactions. The abundant proportions of parasite sequences indicate a potentially important role for parasites in the Antarctic marine ecosystem, with implications for plankton population dynamics, the role of the microbial loop, carbon flows and ecosystem responses to ongoing anthropogenic climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.