4 resultados para proof

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of culture-independent techniques have been developed that can be used in conjunction with culture-dependent physiological and metabolic studies of key microbial organisms, in order to better understand how the activity of natural populations influences and regulates all major biogeochemical cycles. In this study, we combined DNA-stable isotope probing with metagenomics and metaproteomics to characterize an as yet uncultivated marine methylotroph that actively incorporated carbon from 13C-labeled methanol into biomass. By metagenomic sequencing of the heavy DNA, we retrieved virtually the whole genome of this bacterium and determined its metabolic potential. Through protein-stable isotope probing, the RuMP cycle was established as the main carbon assimilation pathway, and the classical methanol dehydrogenase-encoding gene mxaF, as well as three out of four identified xoxF homologues were found to be expressed. This proof-of-concept study is the first in which theculture-independent techniques of DNA- and protein-stable isotope probing have been used to characterize the metabolism of a naturally-ocurring Methylophaga-like bacterium in the marine environment (i.e. M. thiooxydans L4) and thus provides a powerful approach to access the genome and proteome of uncultivated microbes involved in key processes in the environment