4 resultados para polarimetric SAR

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological responses to climate change are typically communicated in generalized terms such as poleward and altitudinal range shifts, but adaptation efforts relevant to management decisions often require forecasts that incorporate the interaction of multiple climatic and nonclimatic stressors at far smaller spatiotemporal scales. We argue that the desire for generalizations has, ironically, contributed to the frequent conflation of weather with climate, even within the scientific community. As a result, current predictions of ecological responses to climate change, and the design of experiments to understand underlying mechanisms, are too often based on broad-scale trends and averages that at a proximate level may have very little to do with the vulnerability of organisms and ecosystems. The creation of biologically relevant metrics of environmental change that incorporate the physical mechanisms by which climate trains patterns of weather, coupled with knowledge of how organisms and ecosystems respond to these changes, can offer insight into which aspects of climate change may be most important to monitor and predict. This approach also has the potential to enhance our ability to communicate impacts of climate change to nonscientists and especially to stakeholders attempting to enact climate change adaptation policies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ESA Data User Element (DUE) funded GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. Today, a synergetic approach for quantitative analysis can build on high-resolution imaging radar and spectrometer data, infrared radiometer data and radar altimeter measurements. It will further integrate Sentinel-3 in combination with Sentinel-1 SAR data. From existing and past missions, it is often demonstrated that sharp gradients in the sea surface temperature (SST) field and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2-dimensional structures manifested in the satellite observations represent evidence of the upper ocean (~100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-submesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3 and Sentinel-1 will provide a highly valuable data set for further research and development to better relate the 2-dimensional surface expressions and the upper ocean dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Virtual Laboratory is an ESA-funded project to prototype the concept of a single point of access for all satellite remote-sensing data with ancillary model output and in situ measurements for a given region. The idea is to provide easy access for the non-specialist to both data and state-of-the-art processing techniques and enable their easy analysis and display. The project, led by OceanDataLab, is being trialled in the region of the Agulhas Current, as it contains signals of strong contrast (due to very energetic upper ocean dynamics) and special SAR data acquisitions have been recorded there. The project also encourages the take up of Earth Observation data by developing training material to help those not in large scientific or governmental organizations make the best use of what data are available. The website for access is: http://ovl-project.oceandatalab.com/