6 resultados para point-to-segment algorithm
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
This work demonstrates an example of the importance of an adequate method to sub-sample model results when comparing with in situ measurements. A test of model skill was performed by employing a point-to-point method to compare a multi-decadal hindcast against a sparse, unevenly distributed historic in situ dataset. The point-to-point method masked out all hindcast cells that did not have a corresponding in situ measurement in order to match each in situ measurement against its most similar cell from the model. The application of the point-to-point method showed that the model was successful at reproducing the inter-annual variability of the in situ datasets. Furthermore, this success was not immediately apparent when the measurements were aggregated to regional averages. Time series, data density and target diagrams were employed to illustrate the impact of switching from the regional average method to the point-to-point method. The comparison based on regional averages gave significantly different and sometimes contradicting results that could lead to erroneous conclusions on the model performance. Furthermore, the point-to-point technique is a more correct method to exploit sparse uneven in situ data while compensating for the variability of its sampling. We therefore recommend that researchers take into account for the limitations of the in situ datasets and process the model to resemble the data as much as possible.
Resumo:
Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to frequent sampling and global coverage. Nevertheless, coastal data have been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and uncertainty in the modelling of high-frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. altimeter footprint contamination, via retracking, presenting ALES, the Adaptive Leading Edge Subwaveform retracker. ALES is potentially applicable to all the pulse-limited altimetry missions and its aim is to retrack both open ocean and coastal data with the same accuracy using just one algorithm. ALES selects part of each returned echo and models it with a classic ”open ocean” Brown functional form, by means of least square estimation whose convergence is found through the Nelder-Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving more coastal waveforms than the standard processing. By adapting the width of the estimation window according to the significant wave height, it aims at maintaining the accuracy of the standard processing in both the open ocean and the coastal strip. This innovative retracker is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason-1 and Jason-2. Considerations of noise and biases provide a further verification of the strategy. The results show that ALES is able to provide more reliable 20-Hz data for all three missions in areas where even 1-Hz averages are flagged as unreliable in standard products. Application of the ALES retracker led to roughly a half of the analysed tracks showing a marked improvement in correlation with the tide gauge records, with the rms difference being reduced by a factor of 1.5 for Jason-1 and Jason-2 and over 4 for Envisat in the Adriatic Sea (at the closest point to the tide gauge).
Resumo:
Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.
Resumo:
The lesser sandeel Ammodytes marinus is a key species in the North Sea ecosystem, transferring energy from planktonic producers to top predators. Previous studies have shown a long-term decline in the size of 0-group sandeels in the western North Sea, but they were unable to pinpoint the mechanism (later hatching, slower growth or changes in size-dependent mortality) or cause. To investigate the first 2 possibilities we combined 2 independent time series of sandeel size, namely data from chick-feeding Atlantic puffins Fratercula arctica and from the Continuous Plankton Recorder (CPR), in a novel statistical model implemented using Markov Chain Monte Carlo (MCMC). The model estimated annual mean length on 1 July, as well as hatching date and growth rate for sandeels from 1973 to 2006. Mean length-at-date declined by 22% over this period, corresponding to a 60% decrease in energy content, with a sharper decline since 2002. Up to the mid-1990s, the decline was associated with a trend towards later hatching. Subsequently, hatching became earlier again, and the continued trend towards smaller size appears to have been driven by lower growth rates, particularly in the most recent years, although we could not rule out changes in size-dependent mortality. Our findings point to major changes in key aspects of sandeel life history, which we consider are most likely due to direct and indirect temperature-related changes over a range of biotic factors, including the seasonal distribution of copepods and intra- and inter-specific competition with planktivorous fish. The results have implications both for the many predators of sandeels and for age and size of maturation in this aggregation of North Sea sandeels.
Resumo:
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.