3 resultados para partial least square (PLS)
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to frequent sampling and global coverage. Nevertheless, coastal data have been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and uncertainty in the modelling of high-frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. altimeter footprint contamination, via retracking, presenting ALES, the Adaptive Leading Edge Subwaveform retracker. ALES is potentially applicable to all the pulse-limited altimetry missions and its aim is to retrack both open ocean and coastal data with the same accuracy using just one algorithm. ALES selects part of each returned echo and models it with a classic ”open ocean” Brown functional form, by means of least square estimation whose convergence is found through the Nelder-Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving more coastal waveforms than the standard processing. By adapting the width of the estimation window according to the significant wave height, it aims at maintaining the accuracy of the standard processing in both the open ocean and the coastal strip. This innovative retracker is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason-1 and Jason-2. Considerations of noise and biases provide a further verification of the strategy. The results show that ALES is able to provide more reliable 20-Hz data for all three missions in areas where even 1-Hz averages are flagged as unreliable in standard products. Application of the ALES retracker led to roughly a half of the analysed tracks showing a marked improvement in correlation with the tide gauge records, with the rms difference being reduced by a factor of 1.5 for Jason-1 and Jason-2 and over 4 for Envisat in the Adriatic Sea (at the closest point to the tide gauge).
Resumo:
Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.
Resumo:
Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.