3 resultados para parameter driven model
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The lesser sandeel Ammodytes marinus is a key species in the North Sea ecosystem, transferring energy from planktonic producers to top predators. Previous studies have shown a long-term decline in the size of 0-group sandeels in the western North Sea, but they were unable to pinpoint the mechanism (later hatching, slower growth or changes in size-dependent mortality) or cause. To investigate the first 2 possibilities we combined 2 independent time series of sandeel size, namely data from chick-feeding Atlantic puffins Fratercula arctica and from the Continuous Plankton Recorder (CPR), in a novel statistical model implemented using Markov Chain Monte Carlo (MCMC). The model estimated annual mean length on 1 July, as well as hatching date and growth rate for sandeels from 1973 to 2006. Mean length-at-date declined by 22% over this period, corresponding to a 60% decrease in energy content, with a sharper decline since 2002. Up to the mid-1990s, the decline was associated with a trend towards later hatching. Subsequently, hatching became earlier again, and the continued trend towards smaller size appears to have been driven by lower growth rates, particularly in the most recent years, although we could not rule out changes in size-dependent mortality. Our findings point to major changes in key aspects of sandeel life history, which we consider are most likely due to direct and indirect temperature-related changes over a range of biotic factors, including the seasonal distribution of copepods and intra- and inter-specific competition with planktivorous fish. The results have implications both for the many predators of sandeels and for age and size of maturation in this aggregation of North Sea sandeels.
Resumo:
We used a numerical model to investigate if and to what extent cellular photoprotective capacity accounts for succession and vertical distribution of marine phytoplankton species/groups. A model describing xanthophyll photoprotective activity in phytoplankton has been implemented in the European Regional Sea Ecosystem Model and applied at the station L4 in the Western English Channel. Primary producers were subdivided into three phytoplankton functional types defined in terms of their capacity to acclimate to different light-specific environments: low light (LL-type), high light (HL-type) and variable light (VL-type) adapted species. The LL-type is assumed to have low cellular level of xanthophyll-cycling pigments (PX) relative to the modelled photosynthetically active pigments (chlorophyll and fucoxanthin (FUCO) = PSP). The HL-type has high PX content relative to PSP while VL-type presents an intermediate PX to PSP ratio. Furthermore, the VL-type is capable of reversibly converting FUCO to PX and synthesizing new PX under high-light stress. In order to reproduce phytoplankton community succession with each of the three groups being dominant in different periods of the year, we had also to assume reduced grazing pressure on HL-adapted species. Model simulations realistically reproduce the observed seasonal patterns of pigments and nutrients highlighting the reasonability of the underpinning assumptions. Our model suggests that pigment-mediated photophysiology plays a primary role in determining the evolution of marine phytoplankton communities in the winter-spring period corresponding to the shoaling of the mixed layer and the increase of light intensity. Grazing selectivity however contributes to the phytoplankton community composition in summer.
Resumo:
The dynamical link between the Indian Ocean and Atlantic Meridional Overturning Circulation (AMOC) remains poorly understood. This partly arises from the complex Agulhas leakage, which occurs via rings, cyclones, and non-eddy flux. Hindcast simulations suggest that leakage has recently increased but have not decomposed this signal into its constituent mechanisms. Here these are isolated in a realistic ocean model. Increases in simulated leakage are attributed to stronger eddy and non-eddy-driven transports, and a strong warming and salinification, especially within Agulhas rings. Variability in both regimes is associated with strengthening Indian Ocean westerly winds, reflecting an increasingly positive Southern Annular Mode. While eddy and non-eddy flux signals are tied through turbulent eddy dissipation, the ratio between the two varies decadally. Consequently, while altimetry suggests a recent increase in retroflection turbulence and implied leakage, non-eddy flux may also play a significant role in modulating the leakage AMOC connection.