4 resultados para padrão unimodal
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.
Resumo:
The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box–Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.
Resumo:
Despite increased research over the last decade, diversity patterns in Antarctic deep-sea benthic taxa and their driving forces are only marginally known. Depth-related patterns of diversity and distribution of isopods and bivalves collected in the Atlantic sector of the Southern Ocean are analysed. The data, sampled by epibenthic sledge at 40 deep-sea stations from the upper continental slope to the hadal zone (774 – 6348 m) over a wide area of the Southern Ocean, comprises 619 species of isopods and 81 species of bivalves,. There were more species of isopods than bivalves in all samples, and species per station varied from 2 to 85 for isopods and from 0 to 18 for bivalves. Most species were rare, with 72% of isopod species restricted to one or two stations, and 45% of bivalves. Among less-rare species bivalves tended to have wider distributions than isopods. The species richness of isopods varied with depth, showing a weak unimodal curve with a peak at 2000 – 4000 m, while the richness of bivalves did not. Multivariate analyses indicate that there are two main assemblages in the Southern Ocean, one shallow and one deep. These overlap over a large depth-range (2000 – 4000 m). Comparing analyses based on the Sørensen resemblance measure (presence/absence) and Γ+ (presence/absence incorporating relatedness among species) indicates that rare species tend to have other closely related species within the same depth band. Analysis of relatedness among species indicates that the taxonomic variety of bivalves tends to decline at depth, whereas that of isopods is maintained. This, it is speculated, may indicate that the available energy at depth is insufficient to maintain a range of bivalve life-history strategies