8 resultados para objective
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
1. A first step in the analysis of complex movement data often involves discretisation of the path into a series of step-lengths and turns, for example in the analysis of specialised random walks, such as Lévy flights. However, the identification of turning points, and therefore step-lengths, in a tortuous path is dependent on ad-hoc parameter choices. Consequently, studies testing for movement patterns in these data, such as Lévy flights, have generated debate. However, studies focusing on one-dimensional (1D) data, as in the vertical displacements of marine pelagic predators, where turning points can be identified unambiguously have provided strong support for Lévy flight movement patterns. 2. Here, we investigate how step-length distributions in 3D movement patterns would be interpreted by tags recording in 1D (i.e. depth) and demonstrate the dimensional symmetry previously shown mathematically for Lévy-flight movements. We test the veracity of this symmetry by simulating several measurement errors common in empirical datasets and find Lévy patterns and exponents to be robust to low-quality movement data. 3. We then consider exponential and composite Brownian random walks and show that these also project into 1D with sufficient symmetry to be clearly identifiable as such. 4. By extending the symmetry paradigm, we propose a new methodology for step-length identification in 2D or 3D movement data. The methodology is successfully demonstrated in a re-analysis of wandering albatross Global Positioning System (GPS) location data previously analysed using a complex methodology to determine bird-landing locations as turning points in a Lévy walk. For this high-resolution GPS data, we show that there is strong evidence for albatross foraging patterns approximated by truncated Lévy flights spanning over 3·5 orders of magnitude. 5. Our simple methodology and freely available software can be used with any 2D or 3D movement data at any scale or resolution and are robust to common empirical measurement errors. The method should find wide applicability in the field of movement ecology spanning the study of motile cells to humans.
Resumo:
The increasing availability of large, detailed digital representations of the Earth’s surface demands the application of objective and quantitative analyses. Given recent advances in the understanding of the mechanisms of formation of linear bedform features from a range of environments, objective measurement of their wavelength, orientation, crest and trough positions, height and asymmetry is highly desirable. These parameters are also of use when determining observation-based parameters for use in many applications such as numerical modelling, surface classification and sediment transport pathway analysis. Here, we (i) adapt and extend extant techniques to provide a suite of semi-automatic tools which calculate crest orientation, wavelength, height, asymmetry direction and asymmetry ratios of bedforms, and then (ii) undertake sensitivity tests on synthetic data, increasingly complex seabeds and a very large-scale (39 000km2) aeolian dune system. The automated results are compared with traditional, manually derived,measurements at each stage. This new approach successfully analyses different types of topographic data (from aeolian and marine environments) from a range of sources, with tens of millions of data points being processed in a semi-automated and objective manner within minutes rather than hours or days. The results from these analyses show there is significant variability in all measurable parameters in what might otherwise be considered uniform bedform fields. For example, the dunes of the Rub’ al Khali on the Arabian peninsula are shown to exhibit deviations in dimensions from global trends. Morphological and dune asymmetry analysis of the Rub’ al Khali suggests parts of the sand sea may be adjusting to a changed wind regime from that during their formation 100 to 10 ka BP.
Resumo:
Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive’s (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the eleven descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5 and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna and plankton), and assessment regions (Danish, Lithuanian and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas.
Resumo:
Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive’s (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the eleven descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5 and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna and plankton), and assessment regions (Danish, Lithuanian and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas.