7 resultados para nutrient fluxes

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to quantify the relationships between the presence and body size of two burrowing heart urchins (Brissopsis lyrifera and Echinocardium cordatum) and rates of sediment nutrient flux. Furthermore, the impact of seawater acidification on these relationships was determined during this 40-day exposure experiment. Using carbon dioxide (CO2) gas, seawater was acidified to pHNBS 7.6, 7.2 or 6.8. Control treatments were maintained in natural seawater (pH8.0). Under normocapnic conditions, burrowing urchins were seen to reduce the sediment uptake of nitrite or nitrate whilst enhancing the release of silicate and phosphate. In acidified (hypercapnic) treatments, the biological control of biogeochemical cycles by urchins was significantly affected, probably through the combined impacts of high CO2 on nitrifying bacteria, benthic algae and urchin behaviour. This study highlights the importance of considering biological interactions when predicting the consequences of seawater acidification on ecosystem function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comprehensive, aggregate nutrient budgets were established for two compartments of the North Sea, the shallow coastal and deeper open regions, and for three different periods, representing pre-eutrophication (∼1950), eutrophication (∼1990) and contemporary (∼2000) phases. The aim was to quantify the major budget components, to identify their sources of variability, to specify the anthropogenic components, and to draw implications for past and future policy. For all three periods, open North Sea budgets were dominated (75%) by fluxes from and to the North-East Atlantic; sediment exchange was of secondary importance (18%). For the coastal North Sea, fluxes during the eutrophication period were dominated by sediment exchange (49% of all inputs), followed by exchange with the open sea (21%), and anthropogenic inputs (19%). Between 1950 and 1990, N-loading of coastal waters increased by a factor of 1.62 and P-loading by 1.45. These loads declined after 1990. Interannual variability in Atlantic inflow was found to correspond to a variability of 11% in nutrient load to the open North Sea. Area-specific external loads of both the open and coastal North Sea were below Vollenweider-type critical loads when expressed relative to depth and flushing. External area-specific load of the coastal North Sea has declined since 1990 from 1.8 to about 1.4 g P m−2 y−1 in 2000, which is close to the estimate of 1.3 for 1950. N-load declined less, leading to an increase in N/P ratio.