21 resultados para non-native

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information on non-native species (NNS) is often scattered among a multitude of sources, such as regional and national databases, peer-reviewed and grey literature, unpublished research projects, institutional datasets and with taxonomic experts. Here we report on the development of a database designed for the collation of information in Britain. The project involved working with volunteer experts to populate a database of NNS (hereafter called “the species register”). Each species occupies a row within the database with information on aspects of the species’ biology such as environment (marine, freshwater, terrestrial etc.), functional type (predator, parasite etc.), habitats occupied in the invaded range (using EUNIS classification), invasion pathways, establishment status in Britain and impacts. The information is delivered through the Great Britain Non-Native Species Information Portal hosted by the Non-Native Species Secretariat. By the end of 2011 there were 1958 established NNS in Britain. There has been a dramatic increase over time in the rate of NNS arriving in Britain and those becoming established. The majority of established NNS are higher plants (1,376 species). Insects are the next most numerous group (344 species) followed by non-insect invertebrates (158 species), vertebrates (50 species), algae (24 species) and lower plants (6 species). Inventories of NNS are seen as an essential tool in the management of biological invasions. The use of such lists is diverse and far-reaching. However, the increasing number of new arrivals highlights both the dynamic nature of invasions and the importance of updating NNS inventories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic changes to climate and extreme weather events have already led to the introduction of non-native species (NNS) to the North Atlantic. Regional climate models predict that there will be a continuation of the current trend of warming throughout the 21st century providing enhanced opportunities for NNS at each stage of the invasion process. Increasing evidence is now available to show that climate change has led to the northwards range expansion of a number of NNS in the UK and Ireland, such as the Asian club tunicate Styela clava and the Pacific oyster Crassostrea gigas. Providing definitive evidence though of the direct linkage between climate change and the spread of the majority of NNS is extremely challenging, due to other confounding factors, such as anthropogenic activity. Localised patterns of water movement and food supply may also be complicating the overall pattern of northwards range expansion, by preventing the expansion of some NNS, such as the slipper limpet Crepidula fornicata and the Chilean oyster Ostrea chilensis, from a particular region. A greater understanding of the other aspects of climate change and increased atmospheric CO2, such as increased rainfall, heat waves, frequency of storm events, and ocean acidification may aid in increasing the confidence that scientists have in predicting the long term influence of climate change on the introduction, spread and establishment of NNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The UK Government funded, GB Non-Native Species Information Portal (GBNNSIP) collects and collates data on non-native species in Great Britain making information available online. Resources include a comprehensive register of non-native species and detailed fact sheets for a sub-set, significant to humans or the environment. Reporting of species records are linked to risk analyses, rapid responses and horizon scanning to support the early recognition of threats (Figure 12). The portal has improved flow of new and existing distributional data to the National Biodiversity Network (NBN) to generate distribution maps for the portal. The project is led by the Biological Records Centre and the Marine Biological Association is responsible for marine non-native species within this scheme. The INTERREG IV funded project Marinexus has included professional research and citizen science work, which has fed directly into the portal. The portal outputs and the work of Marinexus have a range of marine governance applications, including supporting work towards MSFD compliance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The first presentation focused on best practice in marine environments and was delivered by the MBA, in association with PEGASEAS. Information was presented about the significance of joint working across the Channel and a number of different projects including The Shore Thing Project were explained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relatively new recreational pursuit of coasteering, which has developed in the St David's area of Pembrokeshire, appears to be expanding rapidly. The majority of local commercial recreation providers (outdoor pursuit centers etc.) now appear to offer this pursuit. The majority of the rocky coastlines where it takes place lie within Pembrokeshire Marine Special Area of Conservation (SAC), and are also Sites of Special Scientific Interest (SSSI). No assessment has yet been undertaken of coasteering's potential impact on the intertidal habitats. Therefore the Countryside Council for Wales (CCW) commissioned the Marine Life Information Network (MarLIN) to undertake a desk study of the likely environmental effects of coasteering on rocky intertidal habitats within the Pembrokeshire marine SAC. The desk study was based on a review of the available literature, and in particular the effects of trampling on rocky intertidal communities. Communities (as biotopes) within the Pembrokeshire marine SAC likely to be exposed to coasteering activities were identified from Phase I biotope data for the area, provided by CCW. Where possible, existing research by MarLIN into the intolerance, recoverability and sensitivity of the biotopes identified, was used to identify their potential vulnerability to trampling. The literature review revealed that: - foliose canopy forming algae (e.g. fucoids) were particularly intolerant and sensitive to trampling impacts; - trampling damaged erect coralline turfs, barnacles, and resulted in an increase in bare space; in some cases paths across the shore were visible; - on brown algae dominated shores, understorey algae could suffer due to increased desiccation but algal turf species, opportunists and gastropod grazers (e.g. limpets) could increase in abundance as an indirect effect of trampling, and that - trampling impacts resulted from physical contact and wear and were dependant on the intensity, duration, and frequency of trampling, and even the type of footwear used. A total of 19 intolerant rocky intertidal biotopes were identified as potentially vulnerable to trampling and hence coasteering within the Pembrokeshire marine SAC, of which six are of Welsh importance and eight are nationally rare or scarce. Trampling is a highly localized impact and it was not possible to identify biotopes, and hence communities, actually impacted by coasteering activities in the Pembrokeshire marine SAC. In addition, the majority of the literature addresses the impacts of trampling on wave sheltered or moderately exposed brown algal dominated shores, while coasteering occurs on more wave exposed, steeply inclined shores. Therefore, direct survey of the routes used by coasteering groups within the Pembrokeshire marine SAC is required to identify the intensity, duration and frequency of trampling impact, together with the communities impacted. Given the paucity of data concerning trampling effects in the rocky intertidal in the UK, a survey of the impacts of coasteering would provide an opportunity to examine the effects of trampling and visitor use in steep rocky, wave exposed shores. The report recognizes the potential to engage coasteerers in contributing to the development of strategies for minimizing adverse impacts, recording impacts and collecting information of use in identifying climate change and the occurrence of non-native species.