26 resultados para niche breadth

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mangroves along the Sudanese Red Sea coast are under constant anthropogenic pressure. To better understand the influence of mangrove clearance on the intertidal benthic community, we investigated the composition, biodiversity and standing stock of the macrofauna communities at high-, mid- and low-water levels in three contrasting habitats: a bare sand flat, a cleared mangrove and an intact mangrove. In addition, a community-wide metric approach based on taxon-specific carbon and nitrogen isotope values was used to compare the trophic structure between the three habitats. The habitats differed significantly in terms of macrofaunal standing stock, community composition and trophic structure. The high- and mid-water levels of the intact mangroves showed a distinct macrofaunal community characterized by elevated densities and biomass, largely governed by higher decapod and gastropod abundances. Diversity was similar for cleared and intact mangroves, but much lower for the bare sand flat. Community-wide metrics indicated highest trophic diversity and community niche breadth in the intact mangroves. Differences between the cleared and intact mangroves can be partly attributed to differences in sediment characteristics resulting from mangrove clearance. These results suggest a significant impact of mangrove clearance on the macrofaunal community and trophic structure. This study calls for further investigations and management actions to protect and restore these habitats, and ensure the survival of this ecologically valuable coastal ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hutchinson's (1957; Cold Spring Harbour Symp Quant Biol 22:415-427) niche concept is being used increasingly in the context of global change, and is currently applied to many ecological issues including climate change, exotic species invasion and management of endangered species. For both the marine and terrestrial realms, there is a growing need to assess the breadth of the niches of individual species and to make comparisons among them to forecast the species' capabilities to adapt to global change. In this paper, we describe simple non-parametric multivariate procedures derived from a method originally used in climatology to (1) evaluate the breadth of the ecological niche of a species and (2) examine whether the niches are significantly separated. We first applied the statistical procedures to a simple fictive example of 3 species separated by 2 environmental factors in order to describe the technique. We then used it to quantify and compare the ecological niche of 2 key-structural marine zooplankton copepod species, Calanus finmarchicus and C. helgolandicus, in the northern part of the North Atlantic Ocean using 3 environmental factors. The test demonstrates that the niches of both species are significantly separated and that the coldwater species has a niche larger than that of its warmer-water congeneric species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global climate change is expected to modify the spatial distribution of marine organisms. However, projections of future changes should be based on robust information on the ecological niche of species. This paper presents a macroecological study of the environmental tolerance and ecological niche (sensu Hutchinson 1957, i.e. the field of tolerance of a species to the principal factors of its environment) of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas. Biological data were collected by the Continuous Plankton Recorder (CPR) Survey, which samples plankton in the North Atlantic and adjacent seas at a standard depth of 7 m. Eleven parameters were chosen including bathymetry, temperature, salinity, nutrients, mixed-layer depth and an index of turbulence compiled from wind data and chlorophyll a concentrations (used herein as an index of available food). The environmental window and the optimum level were determined for both species and for each abiotic factor and chlorophyll concentration. The most important parameters that influenced abundance and spatial distribution were temperature and its correlates such as oxygen and nutrients. Bathymetry and other water-column-related parameters also played an important role. The ecological niche of C. finmarchicus was larger than that of C. helgolandicus and both niches were significantly separated. Our results have important implications in the context of global climate change. As temperature (and to some extent stratification) is predicted to continue to rise in the North Atlantic sector, changes in the spatial distribution of these 2 Calanus species can be expected. Application of this approach to the 1980s North Sea regime shift provides evidence that changes in sea temperature alone could have triggered the substantial and rapid changes identified in the dynamic regimes of these ecosystems. C. finmarchicus appears to be a good indicator of the Atlantic Polar Biome (mainly the Atlantic Subarctic and Arctic provinces) while C. helgolandicus is an indicator of more temperate waters (Atlantic Westerly Winds Biome) in regions characterised by more pronounced spatial changes in bathymetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional, non-linear numerical model is used to investigate the tidally averaged frictional stress and set-up of water level due to tidal asymmetry in the Severn Estuary; these quantities depend on the overtides in the region. A linearized model of the overtides is applied to calculations of the M4 currents in order to delineate the mechanisms responsible for their generation. The relative importance of individual non-linear mechanisms to the tidally averaged stress and set-up is determined; these mechanisms are interactions between tidal flow and changes in depth or breadth over a cross-section, frictional interaction between the tidal flow and Stokes drift, interaction between the tidal fluctuations in water depth and frictional retardation and non-linear advection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the mechanisms that maintain biodiversity is a fundamental problem in ecology. Competition is thought to reduce diversity, but hundreds of microbial aquatic primary producers species coexist and compete for a few essential resources (e.g., nutrients and light). Here, we show that resource competition is a plausible mechanism for explaining clumpy distribution on individual species volume (a proxy for the niche) of estuarine phytoplankton communities ranging from North America to South America and Europe, supporting the Emergent Neutrality hypothesis. Furthermore, such a clumpy distribution was also observed throughout the Holocene in diatoms from a sediment core. A Lotka-Volterra competition model predicted position in the niche axis and functional affiliation of dominant species within and among clumps. Results support the coexistence of functionally equivalent species in ecosystems and indicate that resource competition may be a key process to shape the size structure of estuarine phytoplankton, which in turn drives ecosystem functioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional response diversity is defined as the diversity of responses to environmental change among species that contribute to the same ecosystem function. Because different ecological processes dominate on different spatial and temporal scales, response diversity is likely to be scale dependent. Using three extensive data sets on seabirds, pelagic fish, and zooplankton, we investigate the strength and diversity in the response of seabirds to prey in the North Sea over three scales of ecological organization. Two-stage analyses were used to partition the variance in the abundance of predators and prey among the different scales of investigation: variation from year to year, variation among habitats, and variation on the local patch scale. On the year-to-year scale, we found a strong and synchronous response of seabirds to the abundance of prey, resulting in low response diversity. Conversely, as different seabird species were found in habitats dominated by different prey species, we found a high diversity in the response of seabirds to prey on the habitat scale. Finally, on the local patch scale, seabirds were organized in multispecies patches. These patches were weakly associated with patches of prey, resulting in a weak response strength and a low response diversity. We suggest that ecological similarities among seabird species resulted in low response diversity on the year-to-year scale. On the habitat scale, we suggest that high response diversity was due to interspecific competition and niche segregation among seabird species. On the local patch scale, we suggest that facilitation with respect to the detection and accessibility of prey patches resulted in overlapping distribution of seabirds but weak associations with prey. The observed scale dependencies in response strength and diversity have implications for how the seabird community will respond to different environmental disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim Recent studies have suggested that global diatom distributions are not limited by dispersal, in the case of both extant species and fossil species, but rather that environmental filtering explains their spatial patterns. Hubbell's neutral theory of biodiversity provides a framework in which to test these alternatives. Our aim is to test whether the structure of marine phytoplankton (diatoms, dinoflagellates and coccolithophores) assemblages across the Atlantic agrees with neutral theory predictions. We asked: (1) whether intersite variance in phytoplankton diversity is explained predominantly by dispersal limitation or by environmental conditions; and (2) whether species abundance distributions are consistent with those expected by the neutral model. Location Meridional transect of the Atlantic (50 degrees N50 degrees S). Methods We estimated the relative contributions of environmental factors and geographic distance to phytoplankton composition using similarity matrices, Mantel tests and variation partitioning of the species composition based upon canonical ordination methods. We compared the species abundance distribution of phytoplankton with the neutral model using Etienne's maximum-likelihood inference method. Results Phytoplankton communities are slightly more determined by niche segregation (24%), than by dispersal limitation and ecological drift (17%). In 60% of communities, the assumption of neutrality in species' abundance distributions could not be rejected. In tropical zones, where oceanic gyres enclose large stable water masses, most communities showed low species immigration rates; in contrast, we infer that communities in temperate areas, out of oligotrophic gyres, have higher rates of species immigration. Conclusions Phytoplankton community structure is consistent with partial niche assembly and partial dispersal and drift assembly (neutral processes). The role of dispersal limitation is almost as important as habitat filtering, a fact that has been largely overlooked in previous studies. Furthermore, the polewards increase in immigration rates of species that we have discovered is probably caused by water mixing conditions and productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent strategies to sustain fish stocks have suggested a move towards an ecosystem based fisheries management (EBFM) approach. While EBFM considers the effect of fishing at the ecosystem level, it generally struggles with climate-driven environmental variability. In this study we show that the position of a fish stock within its distributional range or thermal niche (we use Icelandic and North Sea cod as examples of stocks at the centre and edge of their niche, respectively) will influence the relative importance of fishing and climate on abundance. At the warmer edge of the thermal niche of cod in the North Sea, we show a prominent influence of climate on the cod stock that is mediated through temperature effects on the plankton. In contrast, the influence of climate through its effects on plankton appears much less important at the present centre of the niche around Iceland. Recognising the potentially strong effect of climate on fish stocks, at a time of rapid global climate change, is probably an important prerequisite towards the synthesis of a cod management strategy.