12 resultados para next generation sequencing

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly attractive in future if sequence reference libraries of accurately identified individuals are better populated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the ecological importance of copepods, few Next Generation Sequencing studies (NGS) have been performed on small crustaceans, and a standard method for RNA extraction is lacking. In this study, we compared three commonly-used methods: TRIzol®, Aurum Total RNA Mini Kit and Qiagen RNeasy Micro Kit, in combination with preservation reagents TRIzol® or RNAlater®, to obtain high-quality and quantity of RNA from copepods for NGS. Total RNA was extracted from the copepods Calanus helgolandicus, Centropages typicus and Temora stylifera and its quantity and quality were evaluated using NanoDrop, agarose gel electrophoresis and Agilent Bioanalyzer. Our results demonstrate that preservation of copepods in RNAlater® and extraction with Qiagen RNeasy Micro Kit were the optimal isolation method for high-quality and quantity of RNA for NGS studies of C. helgolandicus. Intriguingly, C. helgolandicus 28S rRNA is formed by two subunits that separate after heat-denaturation and migrate along with 18S rRNA. This unique property of protostome RNA has never been reported in copepods. Overall, our comparative study on RNA extraction protocols will help increase gene expression studies on copepods using high-throughput applications, such as RNA-Seq and microarrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine ecosystems. Despite their ecological importance, species identification remains challenging. Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic nuclear markers to efficiently identify parental species and hybrids. Using next-generation sequencing analysis of both the genome and transcriptome from two sibling species, Calanus finmarchicus and Calanus glacialis, we developed a panel of 12 nuclear insertion/deletion markers. All the markers showed species-specific amplicon length. Furthermore, most of the markers were successfully amplified in other Calanus species, allowing the molecular identification of Calanus helgolandicus, Calanus hyperboreus and Calanus marshallae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Molecular probe-based methods (Fluorescent in-situ hybridisation or FISH, Next Generation Sequencing or NGS) have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that lack distinct morphological features, such as picoplankton. However, FISH methods have the major drawback that they can only identify one or just a few species at a time because of the reduced number of available fluorochromes that can be added to the probe. Although the length of sequence that can be obtained is continually improving, NGS still requires a great deal of handling time, its analysis time is still months and with a PCR step it will always be sensitive to natural enzyme inhibitors. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single-glass slide, the so-called phylochip, which can be semi-quantitative. This review details the major steps in probe design, design and production of a phylochip and validation of the array. Finally, major microarray studies in the phytoplankton community are reviewed to demonstrate the scope of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite’s association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant ‘type B’ has become established in these colonies and that the lethal ‘type A’ DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite’s association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant ‘type B’ has become established in these colonies and that the lethal ‘type A’ DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change.