4 resultados para name

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the taxonomic resolution of zooplankton data required to identify ocean basin scale biogeographic zonation in the Southern Ocean. A 2,154 km transect was completed south of Australia. Sea surface temperature (SST) measured at 1 min intervals showed that seven physical zones were sampled. Zooplankton were collected at a spatial resolution of similar to 9.2 km with a continuous plankton recorder, identified to the highest possible taxonomic resolution and enumerated. Zooplankton assemblage similarity between samples was calculated using the Bray-Curtis index for the taxonomic levels of species, genus, family, order and class after first log(10)(x + 1) (LA) and then presence/absence (PA) transformation of abundance data. Although within and between zone sample similarity increased with decreasing taxonomic resolution, for both data transformations, cluster analysis demonstrated that the biogeographic separation of zones remained at all taxonomic levels when using LA data. ANOSIM confirmed this, detecting significant differences in zooplankton assemblage structure between all seven a priori determined physical zones for all taxonomic levels when using the LA data. In the case of the PA data for the complete data set, and both LA and PA data for a crustacean only data set, no significant differences were detected between zooplankton assemblages in the Polar frontal zone (PFZ) and inter-PFZ at any taxonomic level. Loss of information at resolutions below the species level, particularly in the PA data, prevented the separation of some zones. However, the majority of physical zones were biogeographically distinct from species level to class using both LA and PA transformations. Significant relationships between SST and zooplankton community structure, summarised as NMDS scores, at all taxonomic levels, for both LA and PA transformations, and complete and crustacean only data sets, highlighted the biogeographic relevance of low resolution taxonomic data. The retention of biogeographic information in low taxonomic resolution data shows that data sets collected with different taxonomic resolutions may be meaningfully merged for the post hoc generation of Southern Ocean time series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hormesis is the name given to the stimulatory effects caused by low levels of potentially toxic agents. When this phenomenon was first identified it was called the Arndt-Schulz Law or Hueppe's Rule, because it was thought to occur generally. Although this generalisation is not accepted today, there has never been more evidence in its support, justifying a re-examination of the phenomenon. Evidence from the literature shows that not only has growth hormesis been observed in a range of taxa after exposure to a variety of agents, but also that the dose-response data have a consistent form. While there are a number of separate hypotheses to explain specific instances of hormesis, the evidence presented here suggests that different examples might have a common explanation, and the possibility of a general theory is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hollow, black reticulate ‘microfossils’ of unknown affinity found in Ordovician to late Cretaceous sediments from North America, Europe and Australia were given the name Linotolypa by Eisenack in 1962. In 1978, he recognised that they were pseudo-microfossils consisting of asphalt, and noted that their structure resembled that of soap bubbles formed in agitated suspensions. These objects are well known as a component of the particles caught from the air by pollen and spore traps at the present day. They are correctly termed ‘cenospheres’ and are formed from coal and possibly pitch and fuel oil by incomplete combustion. If their presence were to be confirmed in Palaeozoic sediments, this would provide important new evidence for the occurrence of fire in the geological record and of the history of levels of O2 in the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deep sea is Earth’s largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at Pacific Ocean methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over two years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes’ intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host’s body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep sea biosphere.