6 resultados para multicomponent reaction

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the ocean in the cycling of oxygenated volatile organic compounds (OVOCs) remains largely unanswered due to a paucity of datasets. We describe the method development of a membrane inlet-proton transfer reaction/mass spectrometer (MI-PTR/MS) as an efficient method of analysing methanol, acetaldehyde and acetone in seawater. Validation of the technique with water standards shows that the optimised responses are linear and reproducible. Limits of detection are 27 nM for methanol, 0.7 nM for acetaldehyde and 0.3 nM for acetone. Acetone and acetaldehyde concentrations generated by MI-PTR/MS are compared to a second, independent method based on purge and trap-gas chromatography/flame ionisation detection (P&T-GC/FID) and show excellent agreement. Chromatographic separation of isomeric species acetone and propanal permits correction to mass 59 signal generated by the PTR/MS and overcomes a known uncertainty in reporting acetone concentrations via mass spectrometry. A third bioassay technique using radiolabelled acetone further supported the result generated by this method. We present the development and optimisation of the MI-PTR/MS technique as a reliable and convenient tool for analysing seawater samples for these trace gases. We compare this method with other analytical techniques and discuss its potential use in improving the current understanding of the cycling of oceanic OVOCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size-fractionated filtration (SFF) is a direct method for estimating pigment concentration in various size classes. It is also common practice to infer the size structure of phytoplankton communities from diagnostic pigments estimated by high-performance liquid chromatography (HPLC). In this paper, the three-component model of Brewin et al. (2010) was fitted to coincident data from HPLC and from SFF collected along Atlantic Meridional Transect cruises. The model accounted for the variability in each data set, but the fitted model parameters differed for the two data sets. Both HPLC and SFF data supported the conceptual framework of the three-component model, which assumes that the chlorophyll concentration in small cells increases to an asymptotic maximum, beyond which further increase in chlorophyll is achieved by the addition of larger celled phytoplankton. The three-component model was extended to a multicomponent model of size structure using observed relationships between model parameters and assuming that the asymptotic concentration that can be reached by cells increased linearly with increase in the upper bound on the cell size. The multicomponent model was verified using independent SFF data for a variety of size fractions and found to perform well (0.628 ≤ r ≤ 0.989) lending support for the underlying assumptions. An advantage of the multicomponent model over the three-component model is that, for the same number of parameters, it can be applied to any size range in a continuous fashion. The multicomponent model provides a useful tool for studying the distribution of phytoplankton size structure at large scales.