8 resultados para multichannel scattering

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particulate optical backscattering coefficient (bbp) is a fundamental optical property that allows monitoring of marine suspended particles both in situ and from space. Backscattering measurements in the open ocean are still scarce, however, especially in oligotrophic regions. Consequently, uncertainties remain in bbp parameterizations as well as in satellite estimates of bbp. In an effort to reduce these uncertainties, we present and analyze a dataset collected in surface waters during the 19th Atlantic Meridional Transect. Results show that the relationship between particulate beam-attenuation coefficient (cp) and chlorophyll-a concentration was consistent with published bio-optical models. In contrast, the particulate backscattering per unit of chlorophyll-a and per unit of cp were higher than in previous studies employing the same sampling methodology. These anomalies could be due to a bias smaller than the current uncertainties in bbp. If that was the case, then the AMT19 dataset would confirm that bbp:cp is remarkably constant over the surface open ocean. A second-order decoupling between bbp and cp was, however, evident in the spectral slopes of these coefficients, as well as during diel cycles. Overall, these results emphasize the current difficulties in obtaining accurate bbp measurements in the oligotrophic ocean and suggest that, to first order, bbp and cp are coupled in the surface open ocean, but they are also affected by other geographical and temporal variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.