2 resultados para multi-feature control

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, marine ecosystem structure was thought to be bottom-up controlled. In recent years, a number of studies have highlighted the importance of top-down regulation. Evidence is accumulating that the type of trophic forcing varies temporally and spatially, and an integrated view – considering the interplay of both types of control – is emerging. Correlations between time series spanning several decades of the abundances of adjacent trophic levels are conventionally used to assess the type of control: bottom-up if positive or top-down if this is negative. This approach implies averaging periods which might show time-varying dynamics and therefore can hide part of this temporal variability. Using spatially referenced plankton information extracted from the Continuous Plankton Recorder, this study addresses the potential dynamic character of the trophic structure at the planktonic level in the North Sea by assessing its variation over both temporal and spatial scales. Our results show that until the early-1970s a bottom-up control characterized the base of the food web across the whole North Sea, with diatoms having a positive and homogeneous effect on zooplankton filter-feeders. Afterwards, different regional trophic dynamics were observed, in particular a negative relationship between total phytoplankton and zooplankton was detected off the west coast of Norway and the Skagerrak as opposed to a positive one in the southern reaches. Our results suggest that after the early 1970s diatoms remained the main food source for zooplankton filter-feeders east of Orkney–Shetland and off Scotland, while in the east, from the Norwegian Trench to the German Bight, filter-feeders were mainly sustained by dinoflagellates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New regional swath and near-bottom bathymetric data provide constraints on shallow structures at the Hess Deep Rift, an oceanic rift that exposes the crust and upper mantle of fast-spreading oceanic lithosphere created at the East Pacific Rise. These data reveal the presence of a lobate structure with a length of ~ 4 km and a width of ~ 6 km south of an Intrarift Ridge, north of Hess Deep. The lobe consists of a series of concentric benches that are widest in the center of the lobe and narrower at the edges, with a dominant bench separating two distinct morphologic regions in the lobe. There are two end-member possible interpretations of this feature: 1) the lobate structure represents a mass failure with little translation that contains coherent blocks that preserve rift-related lineaments; or 2) it represents degraded tectonic structures, and the lobate form is accounted for by, for example, two intersecting faults. We favor the slump interpretation because it more readily accounts for the lobate form of the feature and the curved benches and based on the presence of other similar lobes in this region. In the slump model, secondary structures within the benches may indicate radial spreading during or after failure. The large lobate structure we identify south of the Intrarift Ridge in Hess Deep is one of the first features of its kind identified in an oceanic rift, and illustrates that mass failure may be a significant process in these settings, consistent with the recognition of their importance in mid-ocean ridges, oceanic islands, and continental rifts. Understanding the structure of the Hess Deep Rift is also important for reconstructing the section of fast-spreading oceanic crust exposed here.