3 resultados para multi-anode transverse field gas ionization chamber
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Seasonal and inter-annual variations in phytoplankton community abundance in the Bay of Biscay are studied. Preliminarily processed by the National Aeronautics and Space Administration (NASA) to yield normalized water-leaving radiance and the top-of-the-atmosphere solar radiance, Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Coastal Zone Color Scanner (CZCS) data are further supplied to our dedicated retrieval algorithms to infer the sought for parameters. By applying the National Oceanic and Atmospheric Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR) data, the surface reflection coefficient in the only band in the visible spectrum is derived and employed for analysis. Decadal bridged time series of variations of diatom-dominated phytoplankton and green dinoflagellate Lepidodinium chlorophorum within the shelf zone and the coccolithophore Emiliania huxleyi in the pelagic area of the Bay are documented and analysed in terms of impacts of some biogeochemical and geophysical forcing factors.
Resumo:
A sampling and analytical system has been developed for shipboard measurements of high-resolution vertical profiles of the marine trace gas dimethylsulfide (DMS). The system consists of a tube attached to a CTD with a peristaltic pump on deck that delivers seawater to a membrane equilibrator and atmospheric pressure chemical ionization mass spectrometer (Eq-APCIMS). This allows profiling DMS concentrations to a depth of 50 m, with a depth resolution of 1.3-2 m and a detection limit of nearly 0.1 nmol L-1. The seawater is also plumbed to allow parallel operation of additional continuous instruments, and simultaneous collection of discrete samples for complementary analyses. A valve alternates delivery of seawater from the vertical profiler and the ship�s underway intake, thereby providing high-resolution measurements in both the vertical and horizontal dimensions. Tests conducted on various cruises in the Mediterranean Sea, Atlantic, Indian, and Pacific Oceans show good agreement between the Eq-APCIMS measurements and purge and trap gas chromatography with flame photometric detection (GC-FPD) and demonstrate that the delivery of seawater from the underway pump did not significantly affect endogenous DMS concentrations. Combination of the continuous flow DMS analysis with high-frequency hydrographic, optical, biological and meteorological measurements will greatly improve the spatial/temporal resolution of seagoing measurements and improve our understanding of DMS cycling.