25 resultados para measurement of time interval
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Certain physiological differences between individuals in different populations of the mussel, Mytilus edulis, are described. In particular, the scope for growth differs in space and time and may be used to assess the animals' physiological condition. When the required measurements are made in the field, the rates of growth predicted from the physiological data agree well with observed rates of growth. An alternative approach utilizes mussels transplanted to various waters, with indices of condition then measured in the laboratory under standard conditions; an example of this approach is illustrated. Laboratory experiments are used to equate various levels of physiological condition with fecundity, in an attempt to equate physiological effects on the individual with likely population damage. A cytochemical index of stress is described, based on the latency of lysosomal enzymes; spatial variability in this index, and its relation with the scope for growth, are discussed. Finally, the results of some experiments on the effects of petroleum hydrocarbons on mussels are described and the presence of inducible activity of NADPH-dependent tetrazolium reductase in the blood cells is demonstrated. Certain considerations that apply in adopting similar measurements of biological effects of pollution in environmental monitoring programmes are discussed.
Resumo:
In 2000 a Review of Current Marine Observations in relation to present and future needs was undertaken by the Inter-Agency Committee for Marine Science and Technology (IACMST). The Marine Environmental Change Network (MECN) was initiated in 2002 as a direct response to the recommendations of the report. A key part of the current phase of the MECN is to ensure that information from the network is provided to policy makers and other end-users to enable them to produce more accurate assessments of ecosystem state and gain a clearer understanding of factors influencing change in marine ecosystems. The MECN holds workshops on an annual basis, bringing together partners maintaining time-series and long-term datasets as well as end-users interested in outputs from the network. It was decided that the first workshop of the MECN continuation phase should consist of an evaluation of the time series and data sets maintained by partners in the MECN with regard to their ‘fit for purpose’ for answering key science questions and informing policy development. This report is based on the outcomes of the workshop. Section one of the report contains a brief introduction to monitoring, time series and long-term datasets. The various terms are defined and the need for MECN type data to complement compliance monitoring programmes is discussed. Outlines are also given of initiatives such as the United Kingdom Marine Monitoring and Assessment Strategy (UKMMAS) and Oceans 2025. Section two contains detailed information for each of the MECN time series / long-term datasets including information on scientific outputs and current objectives. This information is mainly based on the presentations given at the workshop and therefore follows a format whereby the following headings are addressed: Origin of time series including original objectives; current objectives; policy relevance; products (advice, publications, science and society). Section three consists of comments made by the review panel concerning all the time series and the network. Needs or issues highlighted by the panel with regard to the future of long-term datasets and time-series in the UK are shown along with advice and potential solutions where offered. The recommendations are divided into 4 categories; ‘The MECN and end-user requirements’; ‘Procedures & protocols’; ‘Securing data series’ and ‘Future developments’. Ever since marine environmental protection issues really came to the fore in the 1960s, it has been recognised that there is a requirement for a suitable evidence base on environmental change in order to support policy and management for UK waters. Section four gives a brief summary of the development of marine policy in the UK along with comments on the availability and necessity of long-term marine observations for the implementation of this policy. Policy relating to three main areas is discussed; Marine Conservation (protecting biodiversity and marine ecosystems); Marine Pollution and Fisheries. The conclusion of this section is that there has always been a specific requirement for information on long-term change in marine ecosystems around the UK in order to address concerns over pollution, fishing and general conservation. It is now imperative that this need is addressed in order for the UK to be able to fulfil its policy commitments and manage marine ecosystems in the light of climate change and other factors.
Resumo:
The contract work has demonstrated that older data can be assessed and entered into the MR format. Older data has associated problems but is retrievable. The contract successfully imported all datasets as required. MNCR survey sheets fit well into the MR format. The data validation and verification process can be improved. A number of computerised short cuts can be suggested and the process made more intuitive. Such a move is vital if MR is to be adopted as a standard by the recording community both on a voluntary level and potentially by consultancies.
Resumo:
A consideration of some physiological (rates of oxygen consumption, the scope for growth) and cellular (the cytochemical latency of a lysosomal enzyme) processes in bivalve molluscs suggests that animal size and seasonal changes related to the gametogenic cycle are important sources of natural variability. Correcting for size using regression techniques, and limiting measurements to one part of the gametogenic cycle, reduces observed natural variability considerably. Differences between populations are then still apparent, but the results of laboratory experiments with hydrocarbons from crude oil suggest that it should be possible to detect sub-lethal effects due to pollution (the ‘signal’) in the presence of the remaining natural variability (the ‘noise’). Statistical considerations, taken together with results from current studies on Mytilus edulis and Scobicularia plana, indicate that sample sizes of 10–15 individuals should suffice for the detection of possible pollution effects. The physiological effects to be expected in the presence of sub-lethal levels of polluting hydrocarbons are on a scaie that can cause significant ecological damage to a population through a reduction in fecundity and the residual reproductive value of the individuals.