183 resultados para marine community dynamics

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regime shifts are sudden changes in ecosystem structure that can be detected across several ecosystem components. The concept that regime shifts are common in marine ecosystems has gained popularity in recent years. Many studies have searched for the step-like changes in ecosystem state expected under a simple interpretation of this idea. However, other kinds of change, such as pervasive trends, have often been ignored. We assembled over 300 ecological time series from seven UK marine regions, covering two to three decades. We developed state-space models for the first principal component of the time series in each region, a common measure of ecosystem state. Our models allowed both trends and step changes, possibly in combination. We found trends in three of seven regions and step changes in two of seven regions. Gradual and sudden changes are therefore important trajectories to consider in marine ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined how marine plankton interaction networks, as inferred by multivariate autoregressive (MAR) analysis of time-series, differ based on data collected at a fixed sampling location (L4 station in the Western English Channel) and four similar time-series prepared by averaging Continuous Plankton Recorder (CPR) datapoints in the region surrounding the fixed station. None of the plankton community structures suggested by the MAR models generated from the CPR datasets were well correlated with the MAR model for L4, but of the four CPR models, the one most closely resembling the L4 model was that for the CPR region nearest to L4. We infer that observation error and spatial variation in plankton community dynamics influenced the model performance for the CPR datasets. A modified MAR framework in which observation error and spatial variation are explicitly incorporated could allow the analysis to better handle the diverse time-series data collected in marine environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 atm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO2 on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many benthic marine invertebrates, like barnacles, have a planktonic larval stage whose primary purpose is dispersal. How these species colonize suitable substrata is fundamental to understanding their evolution, population biology, and wider community dynamics. Unlike larval dispersal, settlement occurs on a relatively small spatial scale and involves larval behavior in response to physical and chemical characteristics of the substratum. Biogenic chemical cues have been implicated in this process. Their identification, however, has proven challenging, no more so than for the chemical basis of barnacle gregariousness, which was first described >50 years ago. We now report that a biological cue to gregarious settlement, the settlement-inducing protein complex (SIPC), of the major fouling barnacle Balanus amphitrite is a previously undescribed glycoprotein. The SIPC shares a 30% sequence homology with the thioester-containing family of proteins that includes the alpha sub(2)-macroglobulins. The cDNA (5.2 kb) of the SIPC encodes a protein precursor comprising 1,547 aa with a 17-residue signal peptide region. A number of structural characteristics and the absence of a thioester bond in the SIPC suggest that this molecule is a previously undescribed protein that may have evolved by duplication from an ancestral alpha sub(2)-macroglobulin gene. Although the SIPC is regarded as an adult cue that is recognized by the cyprid at settlement, it is also expressed in the juvenile and in larvae, where it may function in larva-larva settlement interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Russell Cycle is one of the classical examples of climate influence on biological oceanography, represented as shifts in the marine plankton over several decades with warm and cool conditions. While the time-series data associated with the phenomenon indicate cyclical patterns, the question remains whether or not the Russell Cycle should be considered a “true cycle”. Zooplankton time-series data from 1924 to 2011 from the western English Channel were analysed with principal component (PC), correlation and spectral analyses to determine the dominant trends, and cyclic frequencies of the Russell Cycle indicators in relation to long-term hydroclimatic indices. PC1 accounted for 37.4% of the variability in the zooplankton data with the main contributions from non-clupeid fish larvae, southwestern zooplankton, and overall zooplankton biovolume. For PC2 (14.6% of data variance), the dominant groups were northern fish larvae, non-sardine eggs, and southern fish larvae. Sardine eggs were the major contributors to PC3 (representing 12.1% of data variance). No significant correlations were observed between the above three components and climate indices: Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and local seawater temperature. Significant 44- and 29-year frequencies were observed for PC3, but the physical mechanisms driving the cycles are unclear. Harmonic analysis did not reveal any significant frequencies in the physical variables or in PCs 1 and 2. To a large extent, this is due to the dominant cycles in all datasets generally being long term (>50 years or so) and not readily resolved in the examined time frame of 88 years, hence restricting the ability to draw firm conclusions on the multidecadal relationship between zooplankton community dynamics in the western English Channel and environmental indices. Thus, the zooplankton time-series often associated and represented as the Russell Cycle cannot be concluded as being truly cyclical.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Russell Cycle is one of the classical examples of climate influence on biological oceanography, represented as shifts in the marine plankton over several decades with warm and cool conditions. While the time-series data associated with the phenomenon indicate cyclical patterns, the question remains whether or not the Russell Cycle should be considered a “true cycle”. Zooplankton time-series data from 1924 to 2011 from the western English Channel were analysed with principal component (PC), correlation and spectral analyses to determine the dominant trends, and cyclic frequencies of the Russell Cycle indicators in relation to long-term hydroclimatic indices. PC1 accounted for 37.4% of the variability in the zooplankton data with the main contributions from non-clupeid fish larvae, southwestern zooplankton, and overall zooplankton biovolume. For PC2 (14.6% of data variance), the dominant groups were northern fish larvae, non-sardine eggs, and southern fish larvae. Sardine eggs were the major contributors to PC3 (representing 12.1% of data variance). No significant correlations were observed between the above three components and climate indices: Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and local seawater temperature. Significant 44- and 29-year frequencies were observed for PC3, but the physical mechanisms driving the cycles are unclear. Harmonic analysis did not reveal any significant frequencies in the physical variables or in PCs 1 and 2. To a large extent, this is due to the dominant cycles in all datasets generally being long term (>50 years or so) and not readily resolved in the examined time frame of 88 years, hence restricting the ability to draw firm conclusions on the multidecadal relationship between zooplankton community dynamics in the western English Channel and environmental indices. Thus, the zooplankton time-series often associated and represented as the Russell Cycle cannot be concluded as being truly cyclical.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The circulation of Atlantic water along the European continental slope, in particular the inflow into the North Sea, influences North Sea water characteristics with consequent changes in the environment affecting plankton community dynamics. The long-term effect of fluctuating oceanographic conditions oil the North Sea, pelagic ecosystem is assessed. It is shown that (i) there are similar regime shifts in the inflow through the northern North Sea and in Sea, Surface Temperature, (ii) long-term phytoplankton trends are influenced by the inflow only in some North Sea regions, and (iii) the spatial variability in chemicophysical and biological parameters highlight the influence of smaller scale processes.