10 resultados para makers
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The continuous plankton recorder (CPR) survey is the largest multi-decadal plankton monitoring programme in the world. It was initiated in 1931 and by the end of 2004 had counted 207,619 samples and identified 437 phyto- and zooplankton taxa throughout the North Atlantic. CPR data are used extensively by the research community and in recent years have been used increasingly to underpin marine management. Here, we take a critical look at how best to use CPR data. We first describe the CPR itself, CPR sampling, and plankton counting procedures. We discuss the spatial and temporal biases in the Survey, summarise environmental data that have not previously been available, and describe the new data access policy. We supply information essential to using CPR data, including descriptions of each CPR taxonomic entity, the idiosyncrasies associated with counting many of the taxa, the logic behind taxonomic changes in the Survey, the semi-quantitative nature of CPR sampling, and recommendations on choosing the spatial and temporal scale of study. This forms the basis for a broader discussion on how to use CPR data for deriving ecologically meaningful indices based on size, functional groups and biomass that can be used to support research and management. This contribution should be useful for plankton ecologists, modellers and policy makers that actively use CPR data.
Resumo:
In 2000 a Review of Current Marine Observations in relation to present and future needs was undertaken by the Inter-Agency Committee for Marine Science and Technology (IACMST). The Marine Environmental Change Network (MECN) was initiated in 2002 as a direct response to the recommendations of the report. A key part of the current phase of the MECN is to ensure that information from the network is provided to policy makers and other end-users to enable them to produce more accurate assessments of ecosystem state and gain a clearer understanding of factors influencing change in marine ecosystems. The MECN holds workshops on an annual basis, bringing together partners maintaining time-series and long-term datasets as well as end-users interested in outputs from the network. It was decided that the first workshop of the MECN continuation phase should consist of an evaluation of the time series and data sets maintained by partners in the MECN with regard to their ‘fit for purpose’ for answering key science questions and informing policy development. This report is based on the outcomes of the workshop. Section one of the report contains a brief introduction to monitoring, time series and long-term datasets. The various terms are defined and the need for MECN type data to complement compliance monitoring programmes is discussed. Outlines are also given of initiatives such as the United Kingdom Marine Monitoring and Assessment Strategy (UKMMAS) and Oceans 2025. Section two contains detailed information for each of the MECN time series / long-term datasets including information on scientific outputs and current objectives. This information is mainly based on the presentations given at the workshop and therefore follows a format whereby the following headings are addressed: Origin of time series including original objectives; current objectives; policy relevance; products (advice, publications, science and society). Section three consists of comments made by the review panel concerning all the time series and the network. Needs or issues highlighted by the panel with regard to the future of long-term datasets and time-series in the UK are shown along with advice and potential solutions where offered. The recommendations are divided into 4 categories; ‘The MECN and end-user requirements’; ‘Procedures & protocols’; ‘Securing data series’ and ‘Future developments’. Ever since marine environmental protection issues really came to the fore in the 1960s, it has been recognised that there is a requirement for a suitable evidence base on environmental change in order to support policy and management for UK waters. Section four gives a brief summary of the development of marine policy in the UK along with comments on the availability and necessity of long-term marine observations for the implementation of this policy. Policy relating to three main areas is discussed; Marine Conservation (protecting biodiversity and marine ecosystems); Marine Pollution and Fisheries. The conclusion of this section is that there has always been a specific requirement for information on long-term change in marine ecosystems around the UK in order to address concerns over pollution, fishing and general conservation. It is now imperative that this need is addressed in order for the UK to be able to fulfil its policy commitments and manage marine ecosystems in the light of climate change and other factors.
Resumo:
The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.
Resumo:
Anthropogenic eutrophication affects the Mediterranean, Black, North and Baltic Seas to various extents. Responses to nutrient loading and methods of monitoring relevant indicators vary regionally, hindering interpretation of ecosystem state changes and preventing a straightforward pan-European assessment of eutrophication symptoms. Here we summarize responses to nutrient enrichment in Europe's seas, comparing existing time-series of selected pelagic (phytoplankton biomass and community composition, turbidity, N:P ratio) and benthic (macro flora and faunal communities, bottom oxygen condition) indicators based on their effectiveness in assessing eutrophication effects. Our results suggest that the Black Sea and Northern Adriatic appear to be recovering from eutrophication due to economic reorganization in the Black Sea catchment and nutrient abatement measures in the case of the Northern Adriatic. The Baltic is most strongly impacted by eutrophication due to its limited exchange and the prevalence of nutrient recycling. Eutrophication in the North Sea is primarily a coastal problem, but may be exacerbated by climatic changes. Indicator interpretation is strongly dependent on sea-specific knowledge of ecosystem characteristics, and no single indicator can be employed to adequately compare eutrophication state between European seas. Communicating eutrophication-related information to policy-makers could be facilitated through the use of consistent indicator selection and monitoring methodologies across European seas. This work is discussed in the context of the European Commission's recently published Marine Strategy Directive.
Resumo:
The European Marine Board recently published a position paper on linking oceans and human health as a strategic research priority for Europe. With this position paper as a reference, the March 2014 Cornwall Oceans and Human Health Workshop brought together key scientists, policy makers, funders, business, and non governmental organisations from Europe and the US to review the recent interdisciplinary and cutting edge research in oceans and human health specifically the growing evidence of the impacts of oceans and seas on human health and wellbeing (and the effects of humans on the oceans). These impacts are a complex mixture of negative influences (e.g. from climate change and extreme weather to harmful algal blooms and chemical pollution) and beneficial factors (e.g. from natural products including seafood to marine renewable energy and wellbeing from interactions with coastal environments). Integrated approaches across disciplines, institutions, and nations in science and policy are needed to protect both the oceans and human health and wellbeing now and in the future.
Resumo:
Eutrophication is a process resulting from an increase in anthropogenic nutrient inputs from rivers and other sources, the consequences of which can include enhanced algal biomass, changes in plankton community composition and oxygen depletion near the seabed. Within the context of the Marine Strategy Framework Directive, indicators (and associated threshold) have been identified to assess the eutrophication status of an ecosystem. Large databases of observations (in situ) are required to properly assess the eutrophication status. Marine hydrodynamic/ecosystem models provide continuous fields of a wide range of ecosystem characteristics. Using such models in this context could help to overcome the lack of in situ data, and provide a powerful tool for ecosystem-based management and policy makers. Here we demonstrate a methodology that uses a combination of model outputs and in situ data to assess the risk of eutrophication in the coastal domain of the North Sea. The risk of eutrophication is computed for the past and present time as well as for different future scenarios. This allows us to assess both the current risk and its sensitivity to anthropogenic pressure and climate change. Model sensitivity studies suggest that the coastal waters of the North Sea may be more sensitive to anthropogenic rivers loads than climate change in the near future (to 2040).
Resumo:
One of the most pressing challenges today is the need to manage our oceans on a sustainable basis, balancing opportunities for exploitation with the need for conservation and protection. A vital tool for informing sustainable management is access to accurate, up-to-date marine environmental data and information, which is also seen as ‘independent’ by industry, conservationists, policy-makers and other Stakeholders. The Marine Biological Association has specialised in providing independent evidence for over a century and hosts a number of programmes dedicated to independent evidence provision. For example, the Marine Life Information Network (MarLIN) is the most comprehensive information resource for the marine environment of the British Isles and also the largest review of the effects of human activities and natural events on marine species and habitats ever undertaken. MarLIN, along with the Data Archive for Seabed Species and Habitats (DASSH and other MBA information resources, is currently being used to support a wide range of UK and European legislation as well as providing vital underpinning information for industry (e.g. through informing EIAs). We provide an overview of MarLIN in particular whilst examining the importance of ‘independent’ scientific information in a multi-use environment.
Resumo:
The European Marine Board recently published a position paper on linking oceans and human health as a strategic research priority for Europe. With this position paper as a reference, the March 2014 Cornwall Oceans and Human Health Workshop brought together key scientists, policy makers, funders, business, and non governmental organisations from Europe and the US to review the recent interdisciplinary and cutting edge research in oceans and human health specifically the growing evidence of the impacts of oceans and seas on human health and wellbeing (and the effects of humans on the oceans). These impacts are a complex mixture of negative influences (e.g. from climate change and extreme weather to harmful algal blooms and chemical pollution) and beneficial factors (e.g. from natural products including seafood to marine renewable energy and wellbeing from interactions with coastal environments). Integrated approaches across disciplines, institutions, and nations in science and policy are needed to protect both the oceans and human health and wellbeing now and in the future.
Resumo:
Marine legislation is becoming more complex and marine ecosystem-based management is specified in national and regional legislative frameworks. Shelf-seas community and ecosystem models (hereafter termed ecosystem models) are central to the delivery of ecosystem-based management, but there is limited uptake and use of model products by decision makers in Europe and the UK in comparison with other countries. In this study, the challenges to the uptake and use of ecosystem models in support of marine environmental management are assessed using the UK capability as an example. The UK has a broad capability in marine ecosystem modelling, with at least 14 different models that support management, but few examples exist of ecosystem modelling that underpin policy or management decisions. To improve understanding of policy and management issues that can be addressed using ecosystem models, a workshop was convened that brought together advisors, assessors, biologists, social scientists, economists, modellers, statisticians, policy makers, and funders. Some policy requirements were identified that can be addressed without further model development including: attribution of environmental change to underlying drivers, integration of models and observations to develop more efficient monitoring programmes, assessment of indicator performance for different management goals, and the costs and benefit of legislation. Multi-model ensembles are being developed in cases where many models exist, but model structures are very diverse making a standardised approach of combining outputs a significant challenge, and there is a need for new methodologies for describing, analysing, and visualising uncertainties. A stronger link to social and economic systems is needed to increase the range of policy-related questions that can be addressed. It is also important to improve communication between policy and modelling communities so that there is a shared understanding of the strengths and limitations of ecosystem models.
Resumo:
Science-based approaches to support the conservation of marine biodiversity have been developed in recent years. They include measures of ‘rarity’, ‘diversity’, ‘importance’, biological indicators of water ‘quality’ and measures of ‘sensitivity’. Identifying the sensitivity of species and biotopes, the main topic of this contribution, relies on accessing and interpreting available scientific data in a structured way and then making use of information technology to disseminate suitably presented information to decision makers. The Marine Life Information Network (MarLIN) has achieved that research for a range of environmentally critical species and biotopes over the past four years and has published the reviews on the MarLIN Web site (www.marlin.ac.uk). Now, by linking the sensitivity database and databases of survey information, sensitivity mapping approaches using GIS are being developed. The methods used to assess sensitivity are described and the approach is advocated for wider application in Europe.