2 resultados para low frequency motion

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (~60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence for climate-correlated low frequency variability of various components of marine ecosystems has accumulated rapidly over the past 2 decades. There has also been a growing recognition that society needs to learn how the fluctuations of these various components are linked, and to predict the likely amplitude and steepness of future changes. Demographic characteristics of marine zooplankton make them especially suitable for examining variability of marine ecosystems at interannual to decadal time scales. Their life cycle duration is short enough that there is little carryover of population membership from year to year, but long enough that variability can be tracked with monthly-to-seasonal sampling. Because zooplankton are rarely fished, comparative analysis of changes in their abundance can greatly enhance our ability to evaluate the importance of and interaction between physical environment, food web, and fishery harvest as causal mechanisms driving ecosystem level changes. A number of valuable within-region analyses of zooplankton time series have been published in the past decade, covering a variety of modes of variability including changes in total biomass, changes in size structure and species composition, changes in spatial distribution, and changes in seasonal timing. But because most zooplankton time series are relatively short compared to the time scales of interest, the statistical power of local analyses is often low, and between-region and between-variable comparisons are also needed. In this paper, we review the results of recent within- and between-region analyses, and suggest some priorities for future work.